
This PDF is the Sample PDF taken from our Comprehensive Study Material for NEET & AIIMS

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

ETOOS Comprehensive Study Material For NEET & AIIMS

CHAPTER

PHOTOSYNTHESIS IN HIGHER PLANTS

"Will is nothing more than a particular case of the general doctrine of association of ideas, and therefore a perfectly mechanical thing".

"JOSEPH PRIESTLEY (1733-1804)"

INTRODUCTION

he process in which green parts of the manufacture or synthesize complex organic food substances using carbon dioxide and water in the presence of sunlight and release oxygen as a by-product. In this process, energy from the sun is converted into chemical energy. It is endergonic, anabolic and oxido-reduction process. Photosynthesis is important due to two reasons: it is the primary source of all food on earth . It is also responsible for the release of oxygen into the atmosphere by green plants.

A simple equation reperesening the process is:

 $6CO_2 + 12H_2O \longrightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$

History of Photosynthesis

- Aristotle and Theophrastus (320 BC) :- Stated that plants absorb all food matter from soil (Humus theory).
- Van Helmont (1648) :- By weighing the Willow plant, concluded that plant take up their food mostly from soil water.
- J. Woodbard (1699) :- Besides water, soil also increases the weight of plants.
- Stephen Hales (1727) :- Recognised the importance of air (CO₂) and light for photosynthesis (nourishment) in plants. He is considered as discoverer of photosynthesis and "Father of plant physiology".
- J. Priestley (1772) :- He carried out very interesting experiment on Bell jar, Rat, Pudina & Candle. He came to conclude that plants purify air (burning of candles) and gaseous exchange occurs during photosynthesis.
- Jan Ingenhousz (1779) :- He explained the importance of light and green colour and also suggested the O₂ releases in the presence of light by green parts.
- Senebier (1782) :- Green plants absorb CO₂ from atmosphere and when the concentration of CO₂ increases the rate of O₂ evolution also increases.
- N. De-Saussure (1804) :- Clarified that released O₂ is equal to the absorbed CO₂. He realised the significance of H₂O in this process. De-Saussure stated that O₂ comes from CO₂ during photosynthesis. (Later on it was disproved by Van Niel)
- Pallatier & Caventou (1818) :- They named green pigment as 'Chlorophyll' and isolated the chlorphyll with the help of alcohol.
- Englemann (1888) :- Described action spectrum of photosynthesis with the help of Spirogyra/Cladophora and aerobic bacteria experiment.
- Mayer (1845) :- Green plants convert solar energy into chemical (potential) energy in the form of organic substance. He gave law of conservation of energy. Formation of organic matter recognised by Mayer.
- Liebig (1845) :- Organic matter are derived from CO, and H,O, during the process of photosynthesis.
- J. V. Sachs (1862) :- Recognised the relation among photosynthesis, chloroplast and starch. First visible product of photosynthesis is starch. Founder of modern concept of photosynthesis. Some people consider Sachs as father of plant physiology. Three cardinal point concept wal also given by him.
- Willstater, Stall Fisher :- Chemistry, structure and properties of Chl-a, and nobel prize winner.
- F. F. Blackman (1905) :- Dark reaction associated with light reaction in photosynthesis and law of limiting factors.
- Warburg (1920) :- Intermittent or flash light experiment on Chlorella and proved that dark reaction exists in photosynthesis.
- Emerson and Arnold (1932) :- Concept of two pigment system (photosystem) in light reaction. Red drop & Emerson enhancement effect.
- Van Niel :- O₂ releases from water and O₂ of glucose comes from CO₂.

 $6CO_2 + 12H_2S \xrightarrow{\text{Bacteria}} C_6H_{12}O_6 + 12S + 6H_2O$

- Robert Hill & Bendal (1937) :- Detailed study of light reaction in isolated chloroplast of stellaria.
 Photolysis of H₂O is the chief role of chloroplast and evolution of O₂ only in the presence of suitable e⁻ acceptor, from water in photosynthesis. (Hill-reaction)
- Ruben, Hassid & Kamen (1941) :- Used O_{18} to experimentally show that O_2 in photosynthesis released from water.

etoosindia.com

2

ETOOS KEY POINTS

"Photosynthesis is a photo-biochemical process, in which organic compounds are synthesized from the inorganic raw materials ($H_2O \& CO_2$) in presence of light energy and pigments (chl.) gas-oxygen evolved as byproduct." First true & oxygenic photosynthesis started in **cyanobacteria (BGA)**.

Roots of Tinospora and Trapa are photosynthetic.

Modern view about photosynthesis is conversion of light/radiant energy into biochemical or potential energy.

Absorption spectrum for photosynthesis in visible light is blue & red wavelength.

Action spectrum is red & blue light in which rate of photosynthesis is higher.

(But rate of photosynthesis is highest in white light than monochromatic light).

Function of accessory pigment carotene is -

1. Converts elementary or nasent oxygen to molecular/gaseous O₂.

O + O (elementary oxygen) + Carotene \rightarrow Epoxide complex $\xrightarrow{\text{Deepoxidase}} O_2 + Carotene.$

- 2. Protects photooxidation (photodamaging) of pigment system.
- 3. Precursor of vit.–A.
- 4. Oxidation to form ABA hormone in guard cells.

Chlorophyll pigment soluble in organic solvents like acetone, ether etc. (anthocyanin is non photosynthetic water soluble pigment, which present in vacuole).

Chloroplast in bundle sheath of Burmuda grass is also granal type.

Photolysis of water occurs at +0.8 E°

In cyanobacteria (BGA), photosynthesis occurs on chlorosomes or lamellisome or carboxysome.

PS–I is strong reductant as PS–I has good ability to reduce NADP⁺, while PS-II is a strong oxidant, because it has extreme power of oxidation & photolysis of water molecule.

264 gm. CO, and 216 gm. water produced, 108 gm. water, 192 gm. O, and 180 gm. glucose.

Annual production of photosynthesis is 170 billion tones of carbohydrate.

Wilmott's bubbler apparatus proves that oxygen is evolved during photosynthesis.

Cytochromes are Iron – porphyrin protein discoverd by MacMunn (termed by Keilin).

Pigments except chlorophyll, presents in Quantasomes are called as **accessory** or **antenna pigment** of light harvesting complex (LHC).

Electroosmotic theory - By Spanner and Jones for translocation of sugars.

Chollet and Ogren (1975) - Recognised 3 categories of C₄ plants.

- (i) Maize and Sugarcane type : In this category malate transported to bundle sheath cells and its decarboxylation gives CO_2 for C_3 cycle.
- Panicum and Chloris type :- In this category malate transported into bundle sheath cells, but this changes into oxaloacetate, which gives CO₂ for C₃ cycle.
- (iii) Atriplex type :- In this category the aspartate transported into bundle sheath cells, where it changes into malate, which provides CO₂ for C₃ cycle.

Mg⁺⁺ required for Rubisco & PEPcase

Ist formed unstable 6-C compound during Calvin cycle is carboxy ketoribitol biphosphate.

Significance of photosynthesis -

Photosynthesis is vital process for life on planet earth as it is the only process, that links the physical and biological world by conversation of solar energy into organic matter, which make bulk of the dry matter of any organism. Presence of O_2 in the atmosphere is also an outcome of photosynthesis. This oxygen is helpful to living organisms in two ways :

- 1. Oxidative break down of organic food matter (respiration)
- 2. Making ozone (O_3) , in outer layer of atmosphere, which helps in stopping the highly destructive U.V. rays.

Efficiency of photosynthesis -

```
One quantum of red light = 47.6 Kcal (One red photon or quantum = 47.6 Kcal)
```

```
One glucose = 686 Kcal. (1 \text{ CH}_2\text{O} = 114.3 \text{ Kcal})
```

```
8 Quantum \times 47.6 Kcal = 381 Kcal energy require for fixation of one CO<sub>2</sub>
```

etoosindia.com

- \rightarrow It is an physicochemical process .
- \rightarrow Half leaf experiment showed that CO₂ is required for photosynthesis.
- \rightarrow Joseph Priestley Proposed the Concept of gaseous exchange by plants with the help of bell jar experiment.
- → Jan Ingenhousz -Showed the importance of Sunlight and Green colour in photosynthesis by using a similar setup as the one used by Priestley.
- \rightarrow Julius von Sachs -Provided evidence for production of glucose and its storage as starch.
- → T.W. Engelmann -Proposed action spectrum of photosynthesis i.e. Red -blue. Experiment on green filamentous alga Cladophora.
- \rightarrow Cornelius Van Niel -Suggested that O₂ evolved during photosynthesis comes from H₂O, not from CO₂. Experiments on purple and green sulphur bacteria.
- → There is a clear division of labour (distribution of work) within the chloroplast i.e. membrane system (grana thylakoids and stroma lamellae) is responsible for light reaction and stroma for dark reaction.
- → In the chromatogram, chlorophyll 'a' shows bright or blue green colour, chloropyll 'b' shows yellow green colour, xanthophyll yellow & carotenes yellow orange.
- \rightarrow Absorption spectrum of photosynthesis blue red.
- \rightarrow Action spectrum of photosynthesis red blue.
- → Accessory pigments (chlorophylls other than reaction centre, xanthophylls and carotenoids) absorb light and transfer the energy to chlorophyll a (reaction centre) thus enhance the efficiency and range of absorption for photosynthesis. →These pigments also protect chlorophyll a from photo-oxiation.
- → One molecule of chlorophyll a (reaction centre) + Antennae molecules (LHC = Light Harvesting Complex) = Photosystem.

PS-I - Reaction centre (Chi 'a' 700 or P700)

PS-II - Reaction centre (Chi 'a' 680 or P 680)

- P = Peak of absorption
- → Noncyclic photophosphorylation is called the Z scheme (due to characteristic shape on a redox potential scale) Water splitting (Photolysis of water) occurs on the inner side (lumen side) of the thylakoid membrane . Products of noncyclic photophosphorylation - ATP, NADPH + H⁺ and O₂.
- \rightarrow Product of cyclic photophosphorylation ATP.
- \rightarrow Products of light reaction which are utilised in dark reaction ATP & NADPH + H⁺.
- \rightarrow In grana thylakoid both noncyclic & cyclic process occurs .
- → In stroma thylakoid only cyclic process occurs because stroma thylakoid / lamellae lack PS-II as well as NADP reductase enzyme.
- \rightarrow Primary electron acceptor from PS-I: Fe-S protein (FRS)
- \rightarrow Primary electron acceptor from PS-II : Pheophytin .
- → The chemiosmotic hypothesis has been put forward by Peter Mitchell to explain the mechanism of ATP synthesis in chloroplast (Photophosphorylation) and Mitochondria (oxidative phosphorylation). According to this hypothesis, ATP synthesis is linked to development of a proton gradient across a membrane (Thylakoid membrane in chloroplast and Inner membrane in mitochondria).

etoosindia.com

20

SOLVED EXAMPLE				
Ex.1	The law of limiting factor for photosynthesis was enunciated by	Ex.6	Manganese and Chlorine is required in	
	(A) Blackman (B) Hill		(A) Nucleic acid synthesis	
	(C) Ruben (D) Kalmen		(B) Plant cell wall formation	
Sol.	(A) : Blackman propounded the law of limiting factors. He also proposed the occurrence of the dark		(C) Photolysis of water during photosynthesis(D) Chlorophyll synthesis	
	phase in photosynthesis.	Sol.	(\mathbb{C}) : The splitting of water during photosynthesis	
Ex.2	Emerson's enhancement effect and Red drop have been instrumental in the discovery of		is called photolysis. Mn and Cl plays important role in photosynthesis specially light reaction o	
	(A) Photophosphorylation and non-cyclic electron transport		photosynthesis in splitting of water.	
	(B) Two photosystems operating simultaneously(C) Photophosphorylation and cyclic electron	Ex.7	Stroma in the chloroplasts of higher plant contains	
	transport		(A) Light-independent reaction enzymes	
	(D) Oxidative phosphorylation		(B) Light-dependent reaction enzymes	
Sol.	(B)		(C) Ribosomes	
Ex.3	Isotopes popularly known to have been used in the		(D) Chlorophyll	
L'A.J	study of photosynthesis are Or	Sol.	(A)	
	Which of the following isotope of carbon was used by Calvin to trace the path of carbon in	Ex.8	Consider the following statements with respect to photosynthesis	
	photosynthesis (B) C^{14} and C^{32} (C) C^{16} (D) D^{32} (C) C^{16} (D) D^{32}		A. The first carbon dioxide acceptor in C_4 cycle is PGA	
Sol.	(C) C^{16} and N^{15} (D) P^{32} and C^{15} (A) : C^{14} isotope used for knowing carbon path and O^{18} used for verified that source of O_2 in		B. In C_3 plants, the first stable product o photosynthesis during dark reaction is RuBP	
- 4	photosynthesis is H_2O , not CO_2		C. Cyclic photophosphorylation results in the formation of ATP	
E x.4	The first event in photosynthesis is			
	(A) Synthesis of ATP(B) Photoexcitation of chlorophyll and ejection of electron		D. Oxygen which is liberated during photosynthesis comes from water	
	(C) Photolysis of water		Of the above statements	
	(D) Release of oxygen		(A) A and B alone are correct	
Sol.	(B) : When photon of light energy falls on		(B) A and C alone are correct	
	chlorophyll molecule, one of the electrons pair from		(C) C and D alone are correct	
	ground or single state passes into higher energy level called excited single state.		(\mathbf{D}) B and C alone are correct	
	-		(\mathbb{E}) B and D alone are correct	
Ex.5	The synthesis of ATP in photosynthesis and respiration is essentially an oxidation-reduction process involving removal of energy from Or Which one is always transferred in redox reaction (A) Oxygen (B) Phytochrome		(C)	
			Excitation of chlorophyll due to light is a	
			(A) Photooxidation reaction	
			(B) Endergonic reaction	
	(C) Cytochrome (D) Electrons		(C) Thermochemical reaction	
Sol.	(D)		(D) Photochemical reaction	
		Sol.	(A)	

	Exercise # 1	SINGLE OBJ	JECTI	VE	NEET LEVEL
1.	Oxygen which is libera	ated during photosynthesis	9.	The isotope of car in photosynthesis	bon used extensively for studies
	(A) Carbon di oxide			$(A) C^{13}$	(B) C ¹⁴
	(B) Water			(C) C ¹⁵	(D) C^{16}
	(C) Chlorophyll		10		
	(D) Phosphoglyceric ac	id	10.	in photosynthesis	nce to show that oxygen released comes from water :-
2.	The process of taking in CO_2 by plants and releasing O_2 is termed as				en (O^{18}) supplied as H_2O appears ased in photosynthesis.
	(A) Transpiration	(B) Respiration		(B) Activated chloroplast in water released O_2 supplied potassium ferrocyanide or some other reducing agent in the absence of CO_2 .	
	(C) Photosynthesis	(D) Endosmosis			
3.	In plants during the process of photosynthesis (A) CO, is taken in			(C) Photosynthetic bacteria use H_2S and CO_2 to mak carbohydrates, H_2O and sulphur.	
	(B) O_2 is taken in			(D) All of the abov	-
	(C) CO_2 is taken out			()	
	(D) O_2 is taken in and C		11.	photosynthesis wa	D_2 in the dark reactions of as successfully traced by the use
4.	In which of the following process, the light energy			of the following :-	
	is converted into chemi			(A) O_2^{18}	$(\mathbf{B}) \mathbf{C}^{14} \mathbf{O}_2$
	(A) Digestive action	(B) Respiration		(C) P^{32}	(D) X - rays
5.	 (C) Photosynthesis (D) Fermentation The dark reaction in photosynthesis is called so because (A) It can apple compare dark 		12.	Discovery of Emerson effect has already shown th existence of :-	
				(A) Two distinct photosystems	
		(A) It can only occur in dark		(B) Light and dark reactions of photosynthesis	
	(B) It does not require light(C) None of these			(C) Photophosphorylation	
	(D) Both (A) & (B)			(D) Photorespiration	on
6.	The law of limiting factor for photosynthesis was given by :-		13.	During the proce materials used are	ess of photosynthesis the raw :-
	(A) R. Hill	(B) Krebs		(A) Glucose	(B) Chlorophyll
	(C) Calvin	(D) Blackman		(C) Starch	(D) CO_2 and H_2O
7.		Beside water and light which is more essential as a		Products of photo	synthesis are :-
	raw material for food formation			(A) Carbon dioxide and food material	
	$(\mathbf{A}) \operatorname{CO}_2$	$(\mathbf{B})\mathbf{O}_2$		(B) Carbohydrates	
	(C) NADP	(D) Mineral salts		(C) Carbon dioxid	
8.	If the CO_2 content of the atmosphere is as high as 300 parts per million -			(D) Formaldehyde	
	(A) All plants would be killed		15.	Name the scientist	, who first pointed out that plant
	(B) The plants would be kneed (B) The plants would not grow properly		_ •	purify foul air by b	
	(C) Plants would grow for some time and then die.			(A) Willstatter	(B) Robert Hooke
	(D) The plants would thrive well			(C) Priestley	(D) Iean Senebier

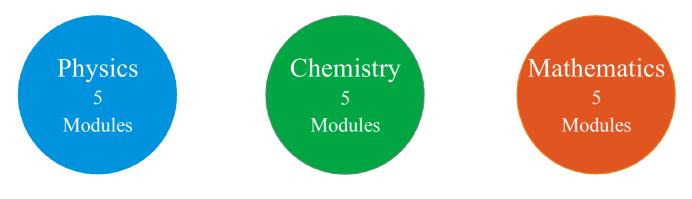
etoosindia.com

	Exercise # 2	SINGLE OBJ	JECTI	VE AIIM	IS LEVEL
1.	Photosynthesis is		9.	Which of the following is	s excited molecule during
	(A) Oxidative, exergonic, catabolic	2		photosynthesis :-	
	(B) Redox-reaction, endergonic, and	nabolic		(A) Chlorophyll	(B) Oxygen
	(C) Reductive, exergonic, anabolic			(C) Carbondioxide	(D) Water
	(D) Reductive, endergonic, catabo	lic	10.	During ionisation of H ₂ O	, H ⁺ is captured by
2.	What is photosynthetic quotient?	,		(A) Chlorophyll	(B) NADP
	$(A) O_2/CO_2$ (B) CC			$(\mathbb{C}) O_2$	(D) Cytochrome
	2 2	ater / starch	11		
3.	Which of the following carries o	ut non-oxygenic	11.	At the time of ionization captures the electron	1 of H_2O , which initially
	photosynthesis?			(A) Chlorophyll	(B) NADP
		ab grass		(C) OH⁻	(D) Cytochrome
	(C) Bacteria (D) Wl	heat plant	12.	Fixation of 1 CO ₂ requires	5:-
4.	Wavelength of light responsible	e for Emerson's		(A) $6NADPH_2 \& 3ATP$	$(\mathbf{B}) 2NADP.H_2 \& 3ATP$
	enhancement effect :			(C) 4 NADP.H ₂ & 3ATP	(D) 5 NADP. H_2 & 3ATP
	(A) only 680 nm		13.	During ATP synthesis ele	ectron pass through
	(B) only 680 nm			(A) Water	(B) Cytochromes
	(C) infra red wavelength			(C) O ₂	(D) CO ₂
	(D) Both 680 nm- and 680 nm			(0) O_2	$(D) OO_2$
5.	The "red - drop" phenomenor disruption of the photo chemical a			Which pigment system ultimately donates e^- for the reduction of NADP.	
	(A) PS - I (B) PS	-I & PS-II both		(A) PS II	(B) PS I
	$(\mathbb{C}) \operatorname{PS} - \operatorname{II} \qquad (\mathbb{D}) \operatorname{Ca}$	rotenoids		$(\mathbb{C}) \operatorname{CO}_2$	(D) Plastoquinone
6.	True for photosynthesis :-			- -	
	(A) Oxidation of CO_2 and reductio	2	15.	Respiration and photosyn	
	(B) process which connects the b	iotic and abiotic		(A) Green cells	(B) Sunlights
	world (C) Exergonic process			(C) Cytochromes	(D) Organic fuel
	(D) Oxidation of Glucose		16.	Photosynthesis is an oxid the materials that is oxidi	-
7.	Which of the following order is a	correct about the		$(A) CO_{2}$	(B) NADP
	rate of photosynthesis?			$(\mathbf{R}) = \mathbf{U}_2$ $(\mathbf{C}) \mathbf{H}_2 \mathbf{O}$	(D) PGA
	(A) Blue > yellow > orange > red			$(C)\Pi_2O$	
	(B) Blue > red > yellow > orange		17.	Element which helps in	•
	(C) Red $>$ blue $>$ yellow $>$ orange			process of photosynthesi	is is
	(D) Yellow $>$ orange $>$ blue $>$ red			(A) Zinc	(B) Molybdenum
8.	The product of hill reaction are :-			(C) Boron	(D) Mangnese
	(A) ATP and NADPH ₂ in chloroplast (B) ATP and NADPH ₂ in mitochondria		18	Photo-oxidation of chlor	onhyll is called
			18.	Photo - oxidation of chlor	
	(C) Only oxygen			(A) Intensification	(B) Chlorosis
	(D) A reduced substance NADPH chloroplast	I_2 , ATP and O_2 in		(C) Solarization	(D) Defoliation

	Exercise # 3			MATCH COLUMN	
1.	Match Column-I with Column-II and select the correct option from the codes given below.				
	Column - I		Column - II		
	A. C_4 plants		i. Succulents		
	B. Chlorophyll <i>b</i>		ii. Accessory photosynth		
	C. PS II		iii. Photo-oxidation of H	$_{2}$ O	
	D. CAM		iv. Kranz anatomy		
	(A) A-iv, B-ii, C-iii, D-i	(B) A-iii, B-ii, C-iv, D-i	(C) A-i, B-iii, C-ii, D-iv	(D) A-i, B-ii, C-iii, D-iv	
2.	Match Column - I with Column - II and select the correct option from the codes given below.				
	$A.C_3$ plants		i. Kalanchoe, Opuntia		
	B. C_4 plants		ii. Maize, sugarcane		
	C. CAM plants	-	iii. Helianthus		
	A	B 	C		
	(A) ii	ш 	i 		
	(B) i	11 	Ш		
	(C) iii	ii iii	i ii		
	(D) i	Ш	Ш		
3.	•		ments of photosynthesis is v	wrongly matched	
	(A) Joseph Priestley	- Showed that plants rel	2		
	(B) Jan Ingenhousz	-	is essential for photosynthe		
	(C) Julius von Sachs		oduce glucose when they gr		
	(D) T.W. Engelmann		substance is located within		
	(E) Cornelius van Net $-$ Showed that hydrogen reduces CO ₂ to carbohydrates				
4.	Match the following and choose the correct combination from the options given				
	Column - I		Column - II		
	A. Visible light		i. 0.1 to 1 nm		
	B. Ultraviolet		ii. 400 to 700 nm		
	C. X-Rays		iii. Longer than 740 nm		
	D. Infrared		iv. 100 to iv00 nm		
	(A) A-i, B-iii, C-iv, D-v	(B) A-iii, B-ii, C-i, D-v	v. 0.1 nm (C) A-iv, B-iii, C-ii, D-i	(D) A-ii, B-iv, C-i, D-iii	
	(E) A-v, B-iv, C-iii, D-ii				
5.	Match the sites in column	I with the processes in co	olumn II and choose the cor	rect combination from the optic	
<i></i>	Column I	r , , , , , , , , , , , , , , , , , , ,	Column II	i con comonication nom the optiv	
	A. Grana of chloroplast		i. Kreb's cycle		
	B. Stroma of chloroplast		ii. Light reaction		
	C. Cytoplasm		iii. Dark reaction		
	D. Mitochondrial matrix		iv. Glycolysis		
	(A) A-iv, B-iii, C-ii, D-i	(B) A-i, B-ii, C-iv, D-iii	(C) A-ii, B-i, C-iii, D-iv	(D) A-iii, B-iv, C-i, D-ii	
	(E)A-ii, B-iii, C-iv, D-i				
6.	Select the incorrect match	ed pair with regard to C.	cvcle		
	(A) Primary CO ₂ , fixation p	7	-PGA		
	(B) Site of initial carboxyl		– Mesophyll cells		
	(C) Primary CO, acceptor		-PEP		
	(D) C_4 plant		- Maize		
	(E) Location of enzyme R_1	ıBisCO	– Bundle sheath cells		
	•				

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

]	Exercise # 4	PART - 1	7[PREVIOUS YEAR (NEET/AIPMT)	
1.	rectly involved in :(A) Formation of phosph(B) Fixation of carbon di	oxide	9.	Which element is located at the centre of the porphyrin ring in chlorophyll : -[CBSE AIPMT 2003](A) Manganese(B) Calcium(C) Magnesium(D) Potassium	
	(C) Synthesis of glucose(D) Photolysis of water ADP to ATP	and starch and phosphorylation of	10.	 Which one of the following is wrong in relation to photorespiration : - [CBSE AIPMT 2003] (A) It is a characteristic of C₃ - plants 	
2.	Fixation of one CO_2 mole requires (A) 1 ATP and 2NADPH ₂ (B) 2 ATP and 2NADPH ₂	cule through Calvin cycle [CBSE AIPMT 2000]		 (B) It occurs in chloroplasts (C) It occurs in daytime only (D) It is a characteristic of C₄ -plants 	
	(C) 3 ATP and $2NADPH_2$ (D) 2 ATP and $1NADPH_2$		11.	In sugarcane plant $14CO_2$ is fixed in malic acid, ir which the enzyme that fixes CO_2 is :- [CBSE AIPMT 2003]	
3.	ton of light (B) Formation of ATP	[CBSE AIPMT 2000] n of chlorophyll by a pho-		 (A) Fructose phosphatase (B) Ribulose biphosphate carboxylase (C) Phosphoenol pyruvic acid carboxylase (D) Ribulose phosphate kinase 	
	(C) Attachment of CO₂ to 5 carbon sugar(D) Ionisation of water		12.	Which fractions of the visible spectrum of solar ra- diations are primarily absorbed by carotenoids of	
4.	How many turns of Calvi of glucose ? (A) 8 (C) 6	n cycil yield one molecule [CBSE AIPMT 2000] (B) 2 (D) 4		the higher plants : -[CBSE AIPMT 2003](A) Violet and blue(B) Blue and green(C) Green and red(D) Red and violet	
5.	Which pair is wrong : -	[CBSE AIPMT 2001]	13.	Chlorophyll in chloroplasts is located in :- [CBSE AIPMT 2004]	
	(A) C_3 – Maize (B) C_4 – Kranz anatomy (C) Calvin cycle - PGA			(A) Outer membrane(B) Inner membrane(C) Thylakoids(D) Stroma	
<i>.</i>	(D) Hatch and Slake cycl		14.	Plants adapted to low light intensity have :- [CBSE AIPMT 2004]	
6.	Which pigment system in (A) PS-I and P.S-II (C) PS-II	[CBSE AIPMT 2001] (B) PS – I (D) None		 (A) Larger photosynthetic unit size than the surplants (B) Higher rate of CO₂ fixation than the sun plants 	
7.		from light reaction to dark	15	(C) More extended root system(D) Leaves modified to spines	
	(A) ADP (C) RUDP	(B) ATP (D) Chlorophyll	15.	In C_3 -plants, the first stable product of photosynthesis during the dark reaction is :- [CBSE AIPMT 2004]	
8.	Which of the following al tosynthesis : - (A) Chlorophyll (C) O ₂	 bosorb light energy for pho- [CBSE AIPMT 2002] (B) Water molecule (D) RUBP 		 (A) Malic acid (B) Oxaloacetic acid (C) 3-phosphoglyceric acid (D) Phosphoglyceraldehyde 	


etoosindia.com

	MOCK	K TEST			
1.	 A plant is provided with ideal conditions for photos of the process are analysed carefully, what would b (A) Both glucose and oxygen are normal. (C) Only glucose is labelled and oxygen is normal 	 synthesis and supplied with isotope ¹⁴CO₂. When the products e the nature of products? (B) Both glucose and oxygen are labelled. (D) Only oxygen is labelled but glucsoe is normal. 			
2.	Chromatophores take part in (A) movement (B) respiration	(C) photosynthesis (D) growth			
3.	Carbon dioxide is necessary for photosynthesis. T entering a control apparatus is (A) calcium oxide (C) potassium hydroxide solution	(B) distilled water(D) sodium carbonate.			
4.	Anoxygenic photosynthesis is characteristic of (A) <i>Rhodospirillum</i> (B) <i>Spirogyra</i>	(C) Chlamydomonas (D) Ulva			
5.	 Which of the following statements is correct? (A) The core of cilium or flagellum is the basal body (B) Elaioplasts store starch whereas aleuroplasts store proteins. (C) Membranous extensions into the cytoplasm in cyanobacteria which contain pigments are called chromatophores (D) Acrocentric chromosomes have only one arm. 				
6.	 Which of the following with respect to early experiments of photosynthesis is wrongly matched? (A) Joseph Priestley - Showed that plants relase O₂ (B) Jan Ingenhousz - Showed that sunlight is essential for photosynthesis (C) Julius von Sachs - Proved that plants produce glucose when they grow. (D) T.W. Engelmann - Showed that the green substance is located within special bodies in plants (E) Cornelius van Niel - Showed that hydrogen reduces CO₂ to carbohydrates 				
7. 8.	In photosynthesis, the light-independent reactions (A) photosystem II (B) stromal matrix Chlorophyll molecules are located in the (A) thylakoid membrane (C) stroma	 take place at (C) thylakoid lumen (D) photosystem I (B) thylakoid lumen (D) inner chloroplast membrane 			
9.	 Emerson's enhancement effect and Red drop have been instrumental in the discovery of (A) photophosphorylation and cyclic electron transport (B) oxidative phosphorylation (C) photophosphorylation and non-cyclic electron transport (D) two photosystems operating simultaneously 				
10.	Match the following. A. Chlorophyll <i>a</i> B. Chlorophyll <i>b</i> C. Xanthophyll D. Carotenoids (A) A-(ii), B-(iv), C-(i), D-(iii) (C) A-(iv), B-(iii), C-(ii), D-(i) (E) A-(iv), B-(i), C-(iii), D-(ii)	 (i) yellow (ii) bright or blue green (iii) yellow - yellow orange (iv) yellow green (B) A-(iii), B-(iv), C-(ii), D-(ii) (D) A-(iv), B-(ii), C-(i), D-(iii) 			

etoosindia.com

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

11th Class Modules Chapter Details

PHYSICS

CHEMISTRY

Module-1

- 1. Physical World & Measurements
- 2. Basic Maths & Vector
- 3. Kinematics

Module-2

- 1. Law of Motion & Friction
- 2. Work, Energy & Power

Module-3

- **1.** Motion of system of
- particles & Rigid Body
- 2. Gravitation

Module-4

- 1. Mechanical Properties of Matter
- 2. Thermal Properties of Matter

Module-5

- 1. Oscillations
- 2. Waves

Module-1(PC)

- 1. Some Basic Conceps of Chemistry
- 2. Atomic Structure
- 3. Chemical Equilibrium
- **4.** Ionic Equilibrium

Module-2(PC)

- 1. Thermodynamics & Thermochemistry
- 2. Redox Reaction
- **3.** States Of Matter (Gaseous & Liquid)

Module-3(IC)

- 1. Periodic Table
- 2. Chemical Bonding
- 3. Hydrogen & Its Compounds
- 4. S-Block

Module-4(OC)

- 1. Nomenclature of
- Organic Compounds
- 2. Isomerism
- 3. General Organic Chemistry

Module-5(OC)

- 1. Reaction Mechanism
- 2. Hydrocarbon
- **3.** Aromatic Hydrocarbon
- 4. Environmental Chemistry & Analysis Of Organic Compounds

BIOLOGY

Module-1

- 1. Diversity in the Living World
- 2. Plant Kingdom
- 3. Animal Kingdom

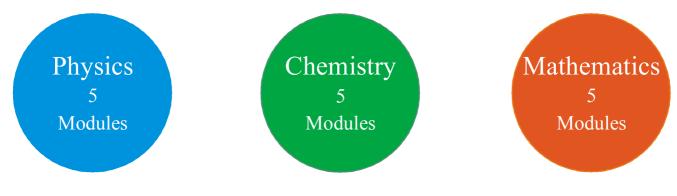
Module-2

- 1. Morphology in Flowering Plants
- **2.** Anatomy of Flowering Plants
- **3.** Structural Organization in Animals

Module-3

- 1. Cell: The Unit of Life
- 2. Biomolecules
- 3. Cell Cycle & Cell Division
- 4. Transport in Plants
- 5. Mineral Nutrition

Module-4


- 1. Photosynthesis in Higher Plants
- 2. Respiration in Plants
- 3. Plant Growth and Development
- 4. Digestion & Absorption
- 5. Breathing & Exchange of Gases

Module-5

- Body Fluids & Its Circulation
 Excretory Products & Their Elimination
- **3.** Locomotion & Its Movement
- 4. Neural Control & Coordination
- **5.** Chemical Coordination and Integration

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

12th Class Modules Chapter Details

PHYSICS

Module-1

- 1. Electrostatics
- 2. Capacitance

Module-2

- 1. Current Electricity
- 2. Magnetic Effect of Current and Magnetism

Module-3

- 1. Electromagnetic Induction
- 2. Alternating Current

Module-4

- 1. Geometrical Optics
- 2. Wave Optics

Module-5

- 1. Modern Physics
- 2. Nuclear Physics
- 3. Solids & Semiconductor Devices
- 4. Electromagnetic Waves

CHEMISTRY

Module-1(PC)

- 1. Solid State
- 2. Chemical Kinetics
- **3.** Solutions and Colligative Properties

Module-2(PC)

- 1. Electrochemistry
- 2. Surface Chemistry

Module-3(IC)

- 1. P-Block Elements
- 2. Transition Elements (d & f block)
- 3. Co-ordination Compound
- 4. Metallurgy

Module-4(OC)

- 1. HaloAlkanes & HaloArenes
- Alcohol, Phenol & Ether
 Aldehyde, Ketone &
- Carboxylic Acid

Module-5(OC)

- 1. Nitrogen & Its Derivatives
- 2. Biomolecules & Polymers
- 3. Chemistry in Everyday Life

BIOLOGY

Module-1

- 1. Reproduction in Organisms
- 2. Sexual Reproduction in
- Flowering Plants
- 3. Human Reproduction
- 4. Reproductive Health

Module-2

- **1.** Principles of Inheritance and Variation
- 2. Molecular Basis of Inheritance
- **3.** Evolution

Module-3

- 1. Human Health and Disease
- 2. Strategies for Enhancement in
- Food Production
- 3. Microbes in Human Welfare

Module-4

- **1.** Biotechnology: Principles and Processes
- 2. Biotechnology and Its
- Applications
- 3. Organisms and Populations

Module-5

- 1. Ecosystem
- 2. Biodiversity and Conservation
- 3. Environmental Issues

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do