
This PDF is the Sample PDF taken from our Comprehensive Study Material for NEET & AIIMS

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

ETOOS Comprehensive Study Material For NEET & AIIMS

CHAPTER

S-BLOCK

When the elements are arranged in vertical columns according to increasing atomic weight, so that the horizontal lines contain analogous elements again according to increasing atomic weight, an arrangement results from which several general conclusions may be drawn.

"DMITRY IVANOVICH MENDELEEV"

INTRODUCTION

The s-block elements of the Periodic Talbe are those in which the last eletron enters the outermost s-orbital. As the s-orbital can accommodate only two electrons, two groups (1 & 2) belong to the s-block of the periodic Table. Group 1 of the Periodic table. Group 1 of the Periodic Table consists of the elements: lithium, sodium, potassium, rubidium, caesium and francium. They are collectively known as the alkali metals. These are so called because they form hydroxides on reaction with water which are strongly alkaline in nature. The elements of Group 2 include beryllium, magnesium, calcium, strontium, barium and radium. These elements with the exception of beryllium are commonly known as the alkaline earth metals. These are so called because theiroxides and hydroxides are alkaline in nature and these metal oxides are found in the earth's crust. The elements in which the last electron enters the outer most s - orbital are called s-block elements. The group I and II of periodic table belongs to the s-block.

ALKALIMETAL

PHYSICAL PROPERTIES :

- (i) Physical State
 - (a) One electron in outermost sheel & General formula ns^1 .
 - (b) Francium is radioactive element.
 - (c) All are silvery white
 - (d) Light soft, malleable and dutile metals with metallic lustre.
 - (e) Alkali metal are paramagnetic, diamagnetic and colourless in form of ions.
- (ii) Atomic Size
 - (a) Biggest in their repective period (except noble gas element)
 - (b) Size increases from Li to Fr due to addition of an extra shell. Li < Na < K < Rb < Cs < Fr

(iii) Softness

- (a) Alkali metals are soft because of
 - (i) Large atomic size
 - (ii) BCC crystal structure (HCP in Li)
 - (iii) Loose packing (68 % packing efficiency)
 - (iv) Weak metallic bond
- (b) Cs is the softest metal in s-block

Atomic size $\propto \frac{1}{\text{strength of metallic bond}} \propto \text{softness} \propto \frac{1}{\text{Melting & Boiling point}}$

- (iv) Melting point and boiling point
 - (a) Weak interatomic bonds are due to their large atomic radil and presence of only one valence electron hence melting point and boiling point are low.
 - (b) Decreasing order of melting point and biling point is Li > Na > K > Rb > Cs
 - (c) With the increase in the size of metal atom, the repulsion of the non-bonding electrons increases and therefore melting point and boiling point decreases from Li to Cs.
- (v) Electro positive character or metallic character

Electropositive $\propto 1$ /Ionisation Potentical

Due to their larger sixe electron can easily be removed to form M⁺ ion. Electro positive property increases from Li to Cs.

(vi) Flame Test

Alkali metals and their salts gives characteristic colour to bunsen flame. The flame energy causes an excitation of the outer most electron which on dropping back to ground state emits absorbed energy as visible light

- Ex. Li-Crimson redNa-Golden yellowK-VioletRb-Red violetCs-Blue
- (vii) Photo Electric Effect
 - (a) Atomic size of K, Rb and Cs is quite large, so their ionisation potential is very low
 - (b) Due to very low ionisation potential their valuence shell electrons gets excited even by absorbing visible light. That's why Cs is used in photo cells.

etoosindia.com

202

	Etoos Tips	s & Formulas 🛛 🔍
Active nitrogen	:	N(atomic nitrogen)
Alums	:	M ₂ 'SO ₄ .M ₂ "(SO ₄) ₃ .24H ₂ O
		$M' = K^+, NH_4^+, Na^+$ etc.
		$M''' = Cr^{+3}, Al^{+3}, Fe^{+3}etc.$
Asbestos	:	CaMg ₃ (SiO ₃) ₄
Arsine	:	AsH ₃
Aquaregia	:	Conc. $HNO_3 + Conc. HCl(1:3 part)$
Anhydrone	:	Mg(CLO ₄),
Argentoferrous galena	:	$PbS + Ag_2S$
Borax	:	$Na_{A}B_{4}O_{7}$. 10H ₂ O
Bluevitriol	:	CuSO ₄ , 5H ₂ O
Barytes	:	BaSO
Baryta water	:	$Ba(OH)_{2}$, solution
Baryta	:	BaO
Baking soda	:	NaHCO ₃
Bleaching powder	:	CaOCl
Boranes	:	Hydride of borone
Brine	:	NaCl solution
Calgon	:	$Na_{2}[Na_{4}(PO_{3})_{6}]$
Coinage metals	:	Cu, Ag and Au
Carborundum	:	SiC
Cementite	:	FeC
Caliche	:	NaNO ₃ + NalO ₃
Caustic soda	:	NaOH
Caustic potash	:	КОН
Calomel	:	Hg,Cl,
Corrosive sublimate	:	HgCl,
Deuterium	:	H^2 of D
D.D.T.	:	¹ p-dichloro, diphenyl, trichloroethane
Dryice	:	Solid CO,
Freon	:	CF,Cl,
Ferric Alum		$K_{2}SO_{4}$. Fe ₂ (SO ₄) ₃ . 24H ₂ O
Fenton's reagent	:	$H_2O_4 + E_2O_4 + 2 H_2O_4$ $H_2O_2 + few drops of FeSO_4$
Fusion's mixutre		$Na_2CO_3 + K_2CO_3$
Fluid magnesia		12% solution of Mg (HCO),
Fehling solution		$CuSO_4$. 5H,O + NaOH + Na,K tartarate

etoosindia.com

SOLVED E	XAM	PLE
Li has the maximum value of ionisation potential among alkali metals i.e.e lithium has the minimum tendency to ionise to give Li ⁺ ion. lithium is – (A) Strongest reducing	Ex. 5	The highest NaOH gives disproportionationreaction with(A) S(B) CO2(C) SO2(D) SO3
 (B) Poorest reducing agent (C) Strongest oxidisting agent (D) Poorest oxidising agent (A) The ionisation potential value of LIthium is maximum among alkali metals i.e., its tendency to 	Sol. Ex. 6	(A) $4S + 6NaOH \xrightarrow{\Delta} Na_2S_2O_3 + 2Na_2S + 3H_2O$ with excess pentasulfide forms $Na_2S + 4S \longrightarrow Na_2S_5$ Metallic magnesium is prepared by
ionise to give Li^+ ions should be the minimum i.e. Li should be the poorest reducing agent. But, lithium is the strongest reducing agent. This is due to the largest value of hydration energy of Li^+ ions.		 (A) Reduction of MgO by coke (B) Electrolysis of aqueous solution of Mg(NO₃) (C) Displacement of Mg by ion from MgSO₄ solution
The highest melting point among alkali metal of – (A) Li (B) Na (C) K (D) Rb (A) Li has highest melting point among alkali metals. All alkali metals have low M.P. The M.P. decreases down the group. The low M.P. are	Sol.	(D) Electrolysis of molten $MgCl_2$ (D) $MgCl_2 \xrightarrow{Electrolysis} Mg^{+2} + 2Cl$ (Molten) Cation Anion Anode : $2Cl^- \longrightarrow 2Cl + 2e^-, Cl + Cl \longrightarrow Cl_3$
decrease down the group. The low M.P. are attributed to their larger atomic size due to which the binding energies of their atoms in the crystal lattice are low.	Ex. 7	Cathode : $Mg^{+2} + 2e^{-} \longrightarrow Mg$ The first ionization potential of Mg is (A) Less than Al (B) More than Al (C) Equal to Al (D) Zero
Commercial common salt becomes slightly damp on keeping. This is due to the fact that – (A) Common salt is hygroscopic (B) Common salt contains some impurity which is	Sol.	(B) Equation in (B) Equation(B) The first ionization potential of Mg is more than Al sice the electron has to be removed from completely filled svalence shell of Mg.
 (D) Common suit contains some impurity winterns hygroscopic (C) Salt is efflorescent (D) Salt is crystalline (B) Commercial common salt commonly becomes slightly damp on keeping because common salt 	Ex.8	 Portland cement is manufactured by using– (A) Lime stone, clay and sand (B) Lime stone, gypsum and sand (C) Lime stone, gypsum and alumina (D) Lime stone, clay and gypsum
contains some impurity $MgCl_2$ and $CaCl_2$ which is hygroscopic in nature and absorbs moisture from the atmosphere.	Sol.	(D) Lime stone $- \text{CaCO}_3$ Clay $-$ silica and alumina Gypsum $- \text{CaSO}_4$.2H ₂ O
CO ₂ gas along with solid (Y) is obtained when sodium salt (X) is heated. (X) is again obtained when CO ₂ gas is passed into (Y). X & Y are – (A) Na ₂ CO ₃ , Na ₂ O (B) Na ₂ CO ₃ , NaOH (C) NaHCO ₃ , Na ₂ CO ₃ (D) Na ₂ CO ₃ , NaHCO ₃ (C) 2NaHCO ₃ $\xrightarrow{\text{Heat}}$ Na ₂ CO ₃ + H ₂ O + CO ₂ (Y)	Ex, 9 Sol.	Gypsum $CaSO_4.2H_2O$ on heating to about 120°Cforms a compound which has the chemicalcomposition represented by(A) $CaSO_4$ (B) $2CaSO_4.H_2O$ (C) $CaSO_4.H_2O$ (D) $2CaSO_4.3H_2O$ (B)

(X) (Y) $Na_2CO_3 + H_2O + CO_2 \longrightarrow 2NaHCO_3$ (Y) (X)

Ex. 1

Sol.

Ex. 2

Sol.

Ex. 3

Sol.

Ex. 4

Sol.

 $2(\text{CaSO}_4.2\text{H}_2\text{O}) \xrightarrow[\text{Dehydration}]{120^{\circ}} > 2\text{CaSO}_4.\text{H}_2\text{O} + 3\text{H}_2\text{O}$ Plaster of paris

etoosindia.com

Gypsum

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

	Exercise # 1	SINGLE OB.	JECTI	VE NE	ET LEVEL
1.	As compared to potassin (A) Lower electronegati (B) Higher ionization po (C) Greater atomic radiu (D) Lower melting point	vity tential 15	9.	Na ₂ CO ₃ can be manufa but K_2CO_3 cannot be p (A) K_2CO_3 is more solut (B) K_2CO_3 is less solub (C) KHCO ₃ is more solut (D) KHCO ₃ is less solut	ble le ıble than NaHCO ₃
2. 3.	Potassium is kept in (A) Alcohol (C) Kerosene The product obtained	 (B) Water (D) Liquid ammonia on fusion of BaSO₄ and 	10.	Which of the following size (A) Rb (C) Na	alkali metals is smallest in (B) K (D) Li
4.		 (B) BaO (D) BaHSO₄ ng statement is correct 	11.	conc. HCl (A) O_2 is evolved (B) Chromyl chloride v	mate crystal are heated with rapours are evolved
	regarding alkali metals (A) Cation is less stable (B) Cation is smaller tha (C) Size of cation and at (D) Cation is greater in s	n the atom om is the same	12.	anomalous properties o (A) The melting point	ng does not illustrate the
5.	Valency electrons in alka (A) 1 (C) 4	(B) 7 (D) 2		(C) Li forms a nitride L	an the other group I metals ¹ ₃ N unlike group I metals compounds are more heavily the rest of the group
6.	-	(B) Ionic radius(B) Melting point	13. 14.	Correct order of increas (A) Cu, Mg, Na (C) Mg, Na, Cu	
7.	As compared to lithium, water because (A) Its molecular weight (B) It is stronger electro		15.	 (A) CO₂ (C) CO Chile saltpetre is (A) NaNO₃ 	 (B) Water vapour (D) No gas (B) Na₂SO₄
0	(C) It is stronger electro(D) It is a metal	-	16.	$(C) KNO_3$ A mixture of KCl and K	(D) Na_2SO_3 F is added to sodium chloride
8.	Which is an ore of potas (A) Carnellite (C) Bauxite	(B) Cryolite (D) Dolomite		 (A) To increase the con (B) To decrease the me (C) To supress the deg (D) To decrease the vo 	lting point of NaCl ree of dissociation of NaCl

etoosindia.com

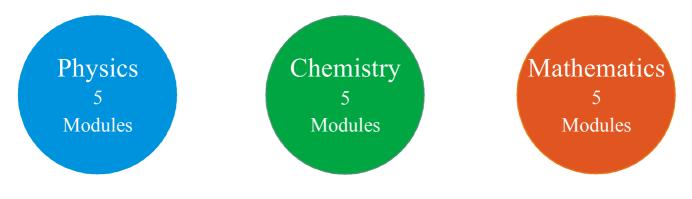
	Exercise # 2 SINGLE OBJ	JECTI	VE AIIMS LEVEL
1.	$CsBr_3$ contains	8.	$(i)A + Na_2CO_3 \rightarrow B + C$
	 (A) Cs-Br covalent bonds (B) Cs³⁺ and Br⁻ ions 		$(ii) A \xrightarrow{CO_2} (Milky) C$
	(C) Cs^+ and Br_3^- ions		The chemical formula of A and B are respectively
	(D) Cs^{3+} and Br_3^{-3-} ions		 (A) NaOH & Ca(OH)₂ (B) Ca(OH), and NaOH
2.	The golden yellow colour associated with NaCl to Bunsen flame can be explained on the basis of		(C) NaOH and CaO (D) CaO & Ca(OH) ₂
	(A) low ionisation potential of sodium	9.	Which of the following statement is false
	(B) emission spectrum		(A) The milk of magnesia used as antacid is
	(C) photosensitivity of sodium		chemically MgO+MgCl ₂
	(D) sublimation of metallic sodium of yellow vapours		(B) Stability of alkali metal peroxides increases with
2	In some start and a solution of the disculation of		increase in atomic number.
3.	Incorrect statement regarding the dissolution of		(C) Hydration energy of AgF is higher than its
	alkali & alkaline earth metals in liq. NH ₃ is		lattice energy.
	(A) Due to high L.E. and I.E. Be and Mg do not		(D) Anhydrous $MgCl_2$ cannot be prepared by direct
	dissolve in liquid NH_3 .		heating of $MgCl_2.6H_2O$.
	(B) Deep biue collour is due to absorption spectrum of solvated electron.	10.	$a + Al_2O_3 \xrightarrow{\text{Hightemperature}} X \xrightarrow{\text{CO}_2in} Y;$
	(C) Solution conducts electricity at all concentra-		Compound Y is
	tion.		(A) NaAlO ₂ (B) NaHCO ₃
	(D) Solution remains paramagnetic at all concentra-		$(\mathbf{C}) \operatorname{Na}_2 \operatorname{CO}_3 \qquad \qquad (\mathbf{D}) \operatorname{Na}_2 \operatorname{O}_2$
	tion.	11.	Mg ₂ C ₃ reacts with water forming propyne. C_3^{4-} has
4.	Which of the following carbide produces propyne		(A) Two sigma and two pi bonds
	on reaction with water.		(B) Three sigma and one pi bond
	$(A) \operatorname{CaC}_{2} (B) \operatorname{Be}_{2} C$		(C) Two sigma and one pi bond
	$(C) Al_4 C_3 \qquad (D) Mg_5 C_3$		(D) Two sigma and three pi bonds
	····-2.5	12.	(White ppt)
5.	(Yellowppt)		$D \xleftarrow{Na_2CO_3} A \xrightarrow{K_2CrO_4} B(Yellowppt)$
	$T \xleftarrow{^{k_2 \operatorname{CrO}_4/\operatorname{H}^+}} X \xrightarrow{^{\operatorname{dil}.\operatorname{HCl}}} Y (\operatorname{Yellowppt}) + Z \uparrow$		dil.H ₂ SO ₄ \downarrow C(Whiteppt)
	(pungent smelling gas) If X gives green flame test.		
	Then, X is		if is the metallic salt, then the white ppt. of D must be of
	(A) $MgSO_4$ (B) BaS_2O_3		(A) stronsium carbonate
	(C) $CuSO_4$ (D) PbS_2O_3		(B) red lead
((C) barium carbonate
6.	Which of the following carbide does not release		(D) calcium carbonate
	any hydrocarbon on reaction with water.		
	(A) SiC (B) Be_2C	13.	Calcium imide on hydrolysis will give gas (B) which
	$(C) CaC_2 \qquad (D) Mg_2C_3$		on oxidation by bleaching powder gives gas (C) gas (C) on reaction with magnesium give compound
7.	The salt which finds uses in qualitative inorganic		(D).(D) on hydrolysis gives again gas (B).(B),(C)
	analysis is		$(\mathbf{D}).(\mathbf{D})$ on hydrorysis gives again gas $(\mathbf{D}).(\mathbf{D}).(\mathbf{C})$ and (\mathbf{D}) are
	(A) $CuSO_4$.5H,O 0r ZnSO_4.5H,O		(A) NH ₃ ,N ₃ ,Mg ₃ N ₂
	(B) K_2SO_4 .Al ₂ (SO_4) ₃ .24H ₂ O		
	(C) Na(NH ₄)HPO ₄ .4H ₂ O		$(B) N_{2}, NH_{3}, MgNH$
	(D) $FeSO_4.(NH_4),SO_4.4H_2O$		$(C) N_2, N_2O_5, Mg(NO_3)_2$
	$(1)^{1} (1)^$		$(\mathbf{D}) \operatorname{NH}_3, \operatorname{NO}_2, \operatorname{Mg}(\operatorname{NO}_2)_2$

etoosindia.com

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

]	Exercise # 3 PART - 1	MATRIX MATCH COLUMN
1.	Match the column- Column - I (A) Ba (B) Ca (C) Na (D) Rb	Column - II (p) Golden yellow (q) Apple green (r) Brick red (s) violet
2.	Match the column- Column I For the production of H ₂ O ₂ (A) Down process (B) Solvay process (C) Leblance process (D) Castner- Kellner cell	Column II (p) K ₂ CO ₃ (q) Manufacture of Na (r) Manufacture of NaOH (s) Na ₂ CO ₃
3.	Match the column- Column - I (A) NaOH + SO ₂ \rightarrow (B) NaOH + CO ₂ \rightarrow (C) NaOH + NO ₂ \rightarrow (D) NaOH + HNO ₃ \rightarrow	Column - II (p) NaNO ₃ (q) Na ₂ SO ₃ (r) Na ₂ CO ₃ (s) NaNO ₂
4.	Match the column- Column -I (A) Metal sulphate $\xrightarrow{\Delta}$ metal oxide + SO2 + O ₂ (B) Metal cation + K ₂ CrO ₄ \rightarrow yellow ppt (C) Metal + NH ₃ $\xrightarrow{(liquid)}$ blue solution (D) MCl ₂ + conc. H ₂ SO ₄ \rightarrow white ppt.	Column -II (p) Ba (q) Sr (r) Na (s) Mg
5.	Match the column- Column -I (A) $Rb_2CO_3 > K_2CO_3 > Na_2CO_3$ (B) $SrSO_4 > CaSO_4 > MgSO_4$ (C) $Rb > K > Na$ (D) $Be > Mg > Ca$	 (s) Hig Column - II (p) solubility of salts in water (q) Thermal stability of salts (r) Softness of metals (s) Hydration energy of metals

etoosindia.com


	Exercise # 4	PART - 1	7	PREVIOUS YEAR (NEET/AIPMT)
1.	ions in aqueous solution	mobility of the alkali metal is [CBSE AIPMT 2006]	8.	Solubility of the alkaline earth's metal sulphates in water decreases in the sequence
	(A) $Li^+ > Na^+ > K^+ > I$			[CBSE AIPMT 2015]
	(B) $Na^+ > K^+ > Rb^+ >$			(A) Mg > Ca > Sr > Ba
	(C) $K^+ > Rb^+ > Na^+ >$			(B) $Ca > Sr > Ba > Mg$
	(D) $Rb^+ > K^+ > Na^+ >$	$\Gamma \Gamma_{+}$		(C) Sr > Ca > Mg > Ba
2.	The correct order of inc	creasing thermal stability of		$(\mathbf{D}) \mathbf{B} \mathbf{a} > \mathbf{M} \mathbf{g} > \mathbf{S} \mathbf{r} > \mathbf{C} \mathbf{a}$
	K ₂ CO ₃ , MgCO ₃ , CaCO ₃	and BeCO ₃ is [CBSE AIPMT 2007]	9.	"Metals are usually not found as nitrates in their ores". [CBSE AIPMT 2015]
	(A) $BeCO_3 < MgCO_3 < 1$	K,CO, <caco,< td=""><td></td><td>Out of the following two (I and II) reasons which is/</td></caco,<>		Out of the following two (I and II) reasons which is/
	(B) $BeCO_3 < MgCO_3 < 0$	$CaCO_3 < K_2CO_3$		are true for the above observation ?
	(C) MgCO ₃ < BeCO ₃ <	$CaCO_3 < K_2CO_3$		I. Metal nitrates are highly unstable.
	$(\mathbb{D}) \mathrm{K}_{2}\mathrm{CO}_{3} < \mathrm{MgCO}_{3} < 0$	CaCO ₃ < BeCO ₃		II. Metal nitrates are highly soluble in water.
3.	In which of the follow	ing the hydration energy is		(A) I and II are true (B) I and II are false
5.	higher than the lattice en	ergy? [CBSE AIPMT 2007]		(C) I is false but II is true (D) I is true but II is false
	(A) $BaSO_4$	$(\mathbf{B}) \mathbf{MgSO}_4$	10.	In context with beryllium, which one of the following
	(C) $RaSO_4$	(D) $SrSO_4$		statements is incorrect ? [NEET 2016, Phase II]
4.	The sequence of ionic r	nobility in aqueous solution		(A) It is rendered passive by nitric acid (B) It forms Da C
	is	[CBSE AIPMT 2008]		(B) It forms Be₂C(C) Its salts rarely hydrolyse
	(A) $K^+ > Na^+ > Rb^+ >$	Cs^+		(D) Its hydride is electron-deficient and polymeric
	(B) $Cs^+ > Rb^+ > K^+ >$			(D) its hydride is electron denerent and polymetre
	(C) $Rb^+ > K^+ > Cs^+ >$		11.	Which of the following statement about hydrogen
	(D) $Na^+ > K^+ > Rb^+ >$	Cs^+		is incorrect? [NEET 2016, Phase I]
5.	Equimolar solution of t	he following were prepared		(A) Hydrogen never acts as cation in ionic salts
		nich one of the solution will		(B) Hydronium ion, H_3O^+ exists freely in solution
	record the highest pH?	[CBSE AIPMT 2008]		(C) Dihydrogen does not act as a reducing agent
	(A) SrCl_2	$(\mathbf{B}) \operatorname{BaCl}_2$		(D) Hydrogen has three isotopes of which tritium is the most common
	(\mathbb{C}) MgCl ₂	(D) $CaCl_2$		
6.	Which one of the follo	wing is present as an active	12.	The product obtained as a result of a reaction of nitrogen with CaC, is [NEET 2016, Phase I]
	ingredient in bleaching	powder for bleaching		(A) CaCN (B) CaCN ₃
		[CBSEAIPMT 2011]		$(C) Ca_2CN \qquad (D) Ca(CN),$
	$(\mathbf{A}) \operatorname{Ca}(\operatorname{OCl})_2$	$(B) CaO_2Cl_2$		· · · 2
	(\mathbb{C}) CaCl ₂	$(\mathbf{D}) \operatorname{CaOCl}_2$	13.	Ionic mobility of which of the following alkali metal
7.	On heating which of the	following releases CO, most		ions is lowest when aqueous solution of their salts are put under an electric field ?
	easily?	[CBSE AIPMT 2015]		[NEET 2017]
	(A) K_2CO_3	$(\mathbf{B}) \operatorname{Na}_2 \operatorname{CO}_3$		(A) Na (B) K
	(C) $MgCO_3$	(D) $CaCO_3$		(C) Rb (D) Li

		MOCK TEST	
-			
	Philospher's wool when heated with	BaO at 1100° C gives a compound	l. Identify the compound
	$(\mathbf{A}) \operatorname{BaZnO}_2 \qquad \qquad (\mathbf{B}) \operatorname{Ba} +$	ZnO_2 (C) BaCdO ₂	(D) $\operatorname{BaO}_2 + \operatorname{Zn}$
	The number of electron and proton i	n the third alkaline earth metal ion	will be
	(A) $\frac{e}{20}, \frac{p}{20}$ (B) $\frac{e}{18},$	$\frac{p}{20}$ (C) $\frac{e}{18}$, $\frac{p}{18}$	(D) $\frac{e}{19}, \frac{p}{20}$
	The compounds of alkaline earth me	etals have the following magnetic n	ature
	•	magnetic (C) Ferromagnet	
	Which of the following is in the inc	reasing order of the ionic character	
	(A) $PbCl_4 < PbCl_2 < CaCl_2 < NaCl_2$	(B) $PbCl_2 < Pbc_2$	$Cl_4 < CaCl_2 < NaCl$
	(C) $PbCl_2 < PbCl_4 < NaCl < CaCl_2$	(D) $PbCl_4 < Pbc_4$	$Cl_2 < NaCl < CaCl_2$
	KO_2 (potassium superoxide) is used	in oxygen cylinders in space and s	submarines because it
	(A) Absorbs CO_2 and increases O_2 of	content (B) Eliminates m	noisture
	(C) Absorbs CO_2	(D) Produces oz	one
	Fire extinguishers contain H_2SO_4 an	d	
	(A) $CaCO_3$	$(\mathbf{B}) \operatorname{Na}_2 \operatorname{CO}_3$	
	(C) NaHCO ₃	(D) NaHCO ₃ and	1 Na ₂ CO ₃
	The stability of the following alkali	metal chlorides follows the order	
	(A) LiCl > KCl > NaCl > CsCl	$(\mathbf{B}) \operatorname{CsCl} > \operatorname{KCl}$	> NaCl > LiCl
	(C) NaCl > KCl > LiCl > CsCl	(D) KCl > CsCl	> NaCl > LiCl
	The reaction of $Na_2S_2O_3$ with iodine	gives	
	+	um sulphite (C) Sodium sulp	(D) Sodium tetrathionate
	Lithium aluminium hydride acts as		
	(A) Oxidising agent (B) Redu	acing agent (C) Both the abo	ove (D) None of these
).	Four reactions are given below		
	(i) $2Li + 2H_2O \rightarrow 2LiOH + H_2$	(ii) $2Na + 2H_2O$	\rightarrow 2NaOH + H ₂
	(iii) $2\text{LiNO}_3 \xrightarrow{\text{Heat}} 2\text{LiNO}_2 + \text{O}_2$	(iv) 2NaNO ₃ —	$\xrightarrow{\text{Heat}} 2\text{NaNO}_2 + \text{O}_2$
	Which of the above, if any, is wrong	5	
	(A) (iv) (B) (iii)	(C) (i)	(D) None of these
•	Increasing order of solubility is		
	(A) CaCO ₃ , KHCO ₃ , NaHCO ₃	(B) NaHCO ₃ ,K	HCO ₃ , CaCO ₃

etoosindia.com

India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

11th Class Modules Chapter Details

PHYSICS

CHEMISTRY

Module-1

- 1. Physical World & Measurements
- 2. Basic Maths & Vector
- 3. Kinematics

Module-2

- 1. Law of Motion & Friction
- 2. Work, Energy & Power

Module-3

- **1.** Motion of system of
- particles & Rigid Body
- 2. Gravitation

Module-4

- 1. Mechanical Properties of Matter
- 2. Thermal Properties of Matter

Module-5

- 1. Oscillations
- 2. Waves

Module-1(PC)

- 1. Some Basic Conceps of Chemistry
- 2. Atomic Structure
- 3. Chemical Equilibrium
- **4.** Ionic Equilibrium

Module-2(PC)

- 1. Thermodynamics & Thermochemistry
- 2. Redox Reaction
- **3.** States Of Matter (Gaseous & Liquid)

Module-3(IC)

- 1. Periodic Table
- 2. Chemical Bonding
- 3. Hydrogen & Its Compounds
- 4. S-Block

Module-4(OC)

- 1. Nomenclature of
- Organic Compounds
- 2. Isomerism
- 3. General Organic Chemistry

Module-5(OC)

- 1. Reaction Mechanism
- 2. Hydrocarbon
- **3.** Aromatic Hydrocarbon
- 4. Environmental Chemistry & Analysis Of Organic Compounds

BIOLOGY

Module-1

- 1. Diversity in the Living World
- 2. Plant Kingdom
- 3. Animal Kingdom

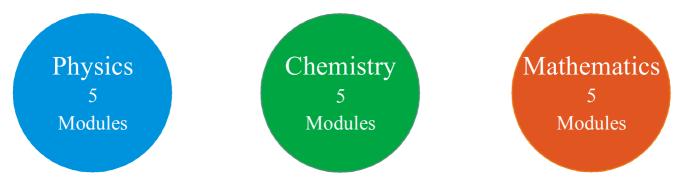
Module-2

- 1. Morphology in Flowering Plants
- **2.** Anatomy of Flowering Plants
- **3.** Structural Organization in Animals

Module-3

- 1. Cell: The Unit of Life
- 2. Biomolecules
- 3. Cell Cycle & Cell Division
- 4. Transport in Plants
- 5. Mineral Nutrition

Module-4


- 1. Photosynthesis in Higher Plants
- 2. Respiration in Plants
- 3. Plant Growth and Development
- 4. Digestion & Absorption
- 5. Breathing & Exchange of Gases

Module-5

- Body Fluids & Its Circulation
 Excretory Products & Their Elimination
- **3.** Locomotion & Its Movement
- 4. Neural Control & Coordination
- **5.** Chemical Coordination and Integration

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

12th Class Modules Chapter Details

PHYSICS

Module-1

- 1. Electrostatics
- 2. Capacitance

Module-2

- 1. Current Electricity
- 2. Magnetic Effect of Current and Magnetism

Module-3

- 1. Electromagnetic Induction
- 2. Alternating Current

Module-4

- 1. Geometrical Optics
- 2. Wave Optics

Module-5

- 1. Modern Physics
- 2. Nuclear Physics
- 3. Solids & Semiconductor Devices
- 4. Electromagnetic Waves

CHEMISTRY

Module-1(PC)

- 1. Solid State
- 2. Chemical Kinetics
- **3.** Solutions and Colligative Properties

Module-2(PC)

- 1. Electrochemistry
- 2. Surface Chemistry

Module-3(IC)

- 1. P-Block Elements
- 2. Transition Elements (d & f block)
- 3. Co-ordination Compound
- 4. Metallurgy

Module-4(OC)

- 1. HaloAlkanes & HaloArenes
- Alcohol, Phenol & Ether
 Aldehyde, Ketone &
- Carboxylic Acid

Module-5(OC)

- 1. Nitrogen & Its Derivatives
- 2. Biomolecules & Polymers
- 3. Chemistry in Everyday Life

BIOLOGY

Module-1

- 1. Reproduction in Organisms
- 2. Sexual Reproduction in
- Flowering Plants
- 3. Human Reproduction
- 4. Reproductive Health

Module-2

- **1.** Principles of Inheritance and Variation
- 2. Molecular Basis of Inheritance
- **3.** Evolution

Module-3

- 1. Human Health and Disease
- 2. Strategies for Enhancement in
- Food Production
- 3. Microbes in Human Welfare

Module-4

- **1.** Biotechnology: Principles and Processes
- 2. Biotechnology and Its
- Applications
- 3. Organisms and Populations

Module-5

- 1. Ecosystem
- 2. Biodiversity and Conservation
- 3. Environmental Issues

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do