This PDF is the Sample PDF taken from our Comprehensive Study Material for NEET & AIIMS

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

ETOOS Comprehensive Study Material For NEET & AIIMS

CHAPTER

BASIC MATHS & VECTOR

"As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality."

"ALBERT EINSTEIN"

INTRODUCTION

he language of physics is mathematics. In order to study physics seriously, one needs to learn mathematics that took generations of brilliant people centuries to work out. The relationship between mathematics and physics has been a subject of study of philosophers, mathematicians and physicists since Antiquity, and more recently also by historians and educators.Generally considered a relationship of great intimacy, mathematics has already been described as "an essential tool for physics and physics has already been described as "a rich source of inspiration and insight in mathematics".

From the seventeenth century, many of the most important advances in mathematics appeared motivated by the study of physics, and this continued in the following centuries. The creation and development of calculus were strongly linked to the needs of physics. There was a need for a new mathematical language to deal with the new dynamics that had arisen from the work of scholars such as Galileo Galilei and Isaac Newton. As time progressed, increasingly sophisticated mathematics started to be used in physics. The current situation is that the mathematical knowledge used in physics is becoming increasingly sophisticated, as in the case of superstring theory.

ETOOS KEY POINTS

Rate of change of a vector with time

It is derivative of a vector function with respect to time. Cartesian components of a time dependent vector, if given as function of time as $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$, the time rate of change can be calculated according to equation

$$\frac{d\vec{r}(t)}{dt} = \frac{dx(t)\hat{i}}{dt} + \frac{dy(t)\hat{j}}{dt} + \frac{dz(t)\hat{k}}{dt}$$

Methods of differentiation of vector functions

Methods of differentiation of scalar functions are also applicable to differentiation of vector functions.

i. $\frac{d}{dt} \left(\vec{F} \pm \vec{G} \right) = \frac{d\vec{F}}{dt} \pm \frac{d\vec{G}}{dt}$
iii. $\frac{d}{dt} \left(X\vec{F} \right) = \frac{dX}{dt} \vec{F} + X \frac{d\vec{F}}{dt}$

ii.
$$\frac{d}{dt} \left(\vec{F} \cdot \vec{G} \right) = \frac{d\vec{F}}{dt} \cdot \vec{G} + \vec{F} \cdot \frac{d\vec{G}}{dt}$$

iii. $\frac{d}{dt} (X\vec{F}) = \frac{dX}{dt} \vec{F} + X \frac{dF}{dt}$ iv. $\frac{d}{dt} (\vec{F} \times \vec{G}) = \frac{d\vec{F}}{dt} \times \vec{G} + \vec{F} \times \frac{d\vec{G}}{dt}$

Order of the vector functions \vec{F} and \vec{G} must be retained.

etoosindia.com

etoosindia.com

126

1.

2.

3.

4.

5.

6.

7.

VECTOR

20. Vector Quantities

A physical quantity which requires magnitude and a particular direction, when it is expressed.

Triangle law of Vector addition $\vec{R} = \vec{A} + \vec{B}$ 21.

$$R = \sqrt{A^2 + B^2 + 2AB\cos 90^\circ}$$

 $\Rightarrow \tan \alpha = \frac{B\sin \theta}{A + B\cos \theta}$ If A = B then $R = 2A\cos\frac{\theta}{2}$ & $\alpha = \frac{\theta}{2}$ $R_{max} = A + B$ for $\theta = 0^\circ$; $R_{min} = A - B$ for $\theta = 180^\circ$

22. Parallelogram law of Addition of Two Vectors

If two vectors are represented by two adjacent sides of a parallelogram which are directed away from their common point then their sum (i.e. resultant vector) is given by the diagonal of the parallelogram passing

away through that common point.

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC} = \overrightarrow{R} \text{ or } \overrightarrow{A} + \overrightarrow{B} = \overrightarrow{R} \implies R = \sqrt{A^2 + B^2} + 2AB\cos\theta$$
$$\tan \alpha = \frac{B\sin\theta}{A + B\cos\theta} \text{ and } \tan \beta = \frac{A\sin\theta}{B + A\cos\theta}$$

23. **Vector subtraction**

 $A + B\cos\theta$

$$\vec{R} = \vec{A} - \vec{B} \implies \vec{R} = \vec{A} + (-\vec{B})$$

$$R = \sqrt{A^2 + B^2 - 2AB\cos 90^\circ}, \qquad \tan \alpha = \frac{B\sin \theta}{A - B\cos \theta}$$
If A = B then $R = 2A\sin\frac{\theta}{2}$

Addition of More than Two Vectors (Law of Polygon) 24.

> If some vectors are represented by sides of a polygon in same order, then their resultant vector is represented by the closing side of polygon in the opposite order.

India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

SOLVED EXAMPLE

Ex. 1 In the given figure, a function $y = 15e^{-x}$ is shown. What is the numerical value of expression Sol. A/(B+C)?

- Sol. From graph A = 15; B = 1; C = 2. Therefore [A/(B+C) = 15/3 = 5]
- Ex. 2 A car changes its velocity linearly from 10 m/s to 20 m/s in 5 seconds. Plot v-t graph and write velocity as a function of time.

Sol. Slope =
$$\frac{20-10}{5-0} = 2 = m$$

v-intercept = $10 = c \implies v = 2t+10$

Ex.3 Three coplanar vectors \vec{A} , \vec{B} and \vec{C} have magnitudes 4, 3 and 2 respectively. If the angle between any two vectors is 120° then which of the

following vector may be equal to $\frac{3\vec{A}}{4} + \frac{\vec{B}}{3} + \frac{\vec{C}}{2}$

As
$$\left|\frac{\vec{B}}{3}\right| = \left|\frac{\vec{C}}{2}\right|$$
 so $\frac{\vec{B}}{3} + \frac{\vec{C}}{2} = -\frac{\vec{A}}{4}$
therefore $\frac{3\vec{A}}{4} + \frac{\vec{B}}{3} + \frac{\vec{C}}{2} = \frac{\vec{A}}{2}$

- **Ex.4** The magnitude of pairs of displacement vectors are given. Which pairs of displacement vectors cannot be added to give a resultant vector of magnitude 13 cm?
 - (A) 4 cm, 16 cm(B) 20 cm, 7 cm(C) 1 cm, 15 cm(D) 6 cm, 8 cm
- Sol. Resultant of two vectors \vec{A} and \vec{B} must satisfy $A \sim B \leq R \leq A + B$
- Ex.5 Three non zero vectors \vec{A} , \vec{B} and \vec{C} satisfy the relation $\vec{A} \cdot \vec{B} = 0$ & $\vec{A} \cdot \vec{C} = 0$. Then \vec{A} can be parallel to:
 - (A) \vec{B} (B) \vec{C}

(C)
$$\vec{B} \cdot \vec{C}$$
 (D) $\vec{B} \times \vec{C}$

Sol. $\vec{A} \cdot \vec{B} = 0 \implies \vec{A} \perp \vec{B} & \vec{A} \cdot \vec{C} = 0$ $\implies \vec{A} \perp \vec{C}$

> But $\vec{B} \times \vec{C}$ is perpendicular to both \vec{B} and \vec{C} so \vec{A} is parallel to $\vec{B} \times \vec{C}$.

- **Ex.6** α and β are the angle made by a vector from positive x & positive y-axes respectively. Which set of α and β is not possible
 - (A) $45^{\circ}, 60^{\circ}$ (B) $30^{\circ}, 60^{\circ}$ (C) $60^{\circ}, 60^{\circ}$ (D) $30^{\circ}, 45^{\circ}$
- **Sol.** α, β must satisfy $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$
- Ex. 7 Let \vec{A} , \vec{B} and \vec{C} , be unit vectors. Suppose that $\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{C} = 0$ and the angle between \vec{B} and \vec{C} is $\frac{\pi}{6}$ then (A) $\vec{A} = (\vec{B} \times \vec{C})$ (B) $\vec{A} = 2(\vec{B} \times \vec{C})$

(C)
$$\vec{A} = 2(\vec{C} \times \vec{B})$$
 (D) $|\vec{B} \times \vec{C}| = \frac{\sqrt{3}}{2}$

etoosindia.com

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

	Exercise # 1	SINGLE OB.	JECTI	VE NEI	ET LEVEL
1.	Find points at which t $y=x^3-3x^2-9x+7$ is par	he tangent to the curve allel to the x-axis	7.	If a unit vector is repres then the value of 'c' is :-	ented by $0.5\hat{i} - 0.8\hat{j} + c\hat{k}$,
	(A) (3,-20) and (-1, 12)	(B) (3,20) and (1, 12)		(A) 1	(B) $\sqrt{0.11}$
	(C) (3,–10) and (1, 12)	(D) None of these		(C) $\sqrt{0.01}$	(D) $\sqrt{0.39}$
2.	A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing ?		8.	The sum of magnitudes of two forces acting at a point is 16N. If the resultant force is 8N and its direction is perpendicular to smaller force, then the forces are :-	
	(A) 80 π cm ² /s	(B) 90 π cm ² /s		(A) 6N and 10N	(B) 8N and 8N
	(C) 85 π cm ² /s	(D) 89 π cm ² /s		(C) 4N and 12N	(D) 2N and 14N
3.	The momentum of a moving particle given by $p = t\ell nt$. Net force acting on this particle is defined by equation $F = \frac{dp}{dt}$.		9.	The unit vector parallel to the resultant of the vectors $\vec{A} = 4\hat{i} + 3\hat{j} + 6\hat{k}$ and $\vec{B} = -\hat{i} + 3\hat{j} - 8\hat{k}$ is :-	
	The net force acting on th	ne particle is zero at time		(A) $\frac{1}{7}(3\hat{i}+6\hat{j}-2\hat{k})$	(B) $\frac{1}{7}(3\hat{i}+6\hat{j}+2\hat{k})$
	(A)t=0	$(\mathbf{B}) \mathbf{t} = \frac{1}{\mathbf{e}}$		(C) $\frac{1}{49}(3\hat{i}+6\hat{j}+2\hat{k})$	(D) $\frac{1}{49}(3\hat{i}+6\hat{j}-2\hat{k})$
	$(\mathbb{C}) t = \frac{1}{e^2}$	(D) None of these	10.	How many minimum n which represent same	umber of coplanar vectors physical quantity having
4.	Let $\vec{A} = \hat{i}A\cos\theta + \hat{j}A\sin\theta$, be any vector. Another			different magnitudes can be added to give zero	
	vector \vec{B} which is normal	al to \vec{A} is :-		resultant	(P) 2
	(A) $\hat{i}B\cos\theta + \hat{j}B\sin\theta$			(C) 4	(D) 5
	(B) $\hat{i}B\sin\theta + \hat{j}B\cos\theta$ (C) $\hat{i}B\sin\theta - \hat{j}B\cos\theta$ (D) $\hat{i}A\cos\theta - \hat{i}A\sin\theta$		11.	A physical quantity which has a direction :-	
				(A) Must be a vector	(B) May be a vector
				(C) Must be a scalar	(D) None of the above
			12.	Following sets of three forces act on a body. Whose	
5.	An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube			(A) 10, 10, 10 (C) 10, 20, 20	(B) 10, 10, 20 (D) 10, 20, 40
	(A) 000 - 3/ (T) 020 - 3/		13	Eight about these costons $\vec{a} \cdot \vec{b} = 1 \cdot \vec{a} = 1$	
	(C) $850 \text{ cm}^3/\text{s}$	(D) 950 cm ³ /s	13.	is the midpoint of PQ. T	hen which of the following
6.	Force 3N, 4N and 12N a perpendicular direction resultant force is :-	act at a point in mutually s. The magnitude of the			
	(A) 19 N	(B) 13 N			
	(C) 11 N	(D) 5 N		0	→ Q

etoosindia.com India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION Ď

BASIC MATHS & VECTOR

		_			
]	Exercise # 2	2 SINGLE OBJ	ECTI	VE Al	IIMS LEVEL
1.	A particle moves along the curve $x^2 + 4 = y$. The points on the curve at which the y coordinates		7.	Let \vec{a} , \vec{b} , \vec{c} be vectors of length 3, 4, 5 respectively. Let \vec{a} be perpendicular to $\vec{b} + \vec{c}$, \vec{b} to $\vec{c} + \vec{c}$ and	
	$(\Lambda)(1.5)$	$(\mathbf{R})(5.1)$			
	(A)(1,3)	$(\mathbf{D})(\mathbf{J},\mathbf{I})$		C to $a+b$. Then $ \dot{a}+b+\dot{c} $ is:	
	(C)(1,2)	(D) None of these		(A) 2√5	(B) 2√2
2.	A ladder 5m long is of the ladder is pull from the wall at a rat	leaning against a wall. The foot led out along the ground away te of 2m/s. How fast is the height	0	(C) 10√5	(D) $5\sqrt{2}$
	of ladder on the wall decreasing at the instant when the foot of the ladder is 4m away from the wall?		0.	the magnitude of the vector is $5\sqrt{2}$ and it makes an angle of 135° with z-axis then the components of	
	(A) 10 m/s	(B) $\frac{3}{2}$ m/s		vector is :	
	0	Z		(A) $2\sqrt{3}, \sqrt{3}, -3$	(B) 2√6,√6,−6
	(C) $\frac{8}{3}$ m/s	(D) None of these		(C) $2\sqrt{5}, \sqrt{5}, -5$	(D) None of these
3.	Moment of inertia	Moment of inertia of a solid about its geometrical		If \vec{a} is a vector and x is a non-zero scalar, then	
				(A) x \vec{a} is a vector in the direction of \vec{a}	
	axis is given by $I = -$	axis is given by $I = \frac{2}{5} MR^2$ where M is mass & R is		(B) x \vec{a} is a vector collinear to \vec{a}	
	radius. Find out the inertia is changing moment $R = 1m$, $M =$ w.r.t. time 2 ms ⁻¹	radius. Find out the rate by which its moment of inertia is changing keeping density constant at the moment $R = 1m$, $M = 1 \text{ kg } \&$ rate of change of radius w.r.t. time 2 ms^{-1}		(C) x \vec{a} and \vec{a} have independent directions (D) None of these.	
	(A) 4 kg ms^{-1}	(B) $2 \text{ kg m}^2 \text{s}^{-1}$	10.	The two vectors \vec{A} and	\vec{B} are drawn from a common
	(C) $4 \text{ kg m}^2 \text{s}^{-1}$	(D) None of these		point and $\vec{C} = \vec{A} + \vec{H}$	\vec{B} then angle between \vec{A} and
4.	Three forces P, Q & plane. The angle bet & 120° respectively	Three forces P, Q & R are acting at a point in the plane. The angle between P & Q and Q & R are 150° & 120° respectively, then for equilibrium (i.e. net		\vec{B} is (A) 90° if C ² \neq A ² + E (B) Greater than 90° i	B^2 f C ² < A ² + B ²
	force = 0), forces P,	Q & R are in the ratio		(C) Greater than 90° i	$f C^2 > A^2 + B^2$
	(A) 1:2:3	(B) $1:2:\sqrt{3}$		(D) None of these	
	(C) 3:2:1	(D) $\sqrt{3}:2:1$		(_)	
5.	If the sum of two ur magnitude of differ	If the sum of two unit vectors is a unit vector, then magnitude of difference is –		Following forces star the origin of the co-o	t acting on a particle at rest at rdinate system simultaneously
	(A) √2	(B) √3		$\vec{F}_1 = -4\hat{i} - 5\hat{j} + 5\hat{k}$,	$\vec{F}_2 = -5\hat{i} + 8\hat{j} + 6\hat{k}$,
	(C) 1/√2	(D) √5		$\vec{F}_3 = -3\hat{i} + 4\hat{j} - 7\hat{k}$	and $\vec{F}_4 = 12\hat{i} - 3\hat{j} - 2\hat{k}$ then
6.	Let $\vec{a}, \vec{b}, \vec{c}$ are three is also a unit vector	unit vectors such that $\vec{a} + \vec{b} + \vec{c}$ or. If pairwise angles between		the particle will move– (A) In x–y plane	
	$\vec{a}, \vec{b}, \vec{c}$ are θ_1, θ_2 and θ_3 respectively then $\cos\theta_1 + \cos\theta_2 + \cos\theta_3$ equals			(B) In y - z plane(C) In x-z plane	
	$(A)3^{1}$	(B)-3		(D) Along x-axis	
	(C) 1	(D) – 1			

	Exercise # 3 PART - 1	MATRIX MATCH COLUMN			
	Following question contains statements given in two Column-I are labelled as A, B, C and D while the stater statement in Column-I can have correct matching with on	columns, which have to be matched. The statements in nents in Column-II are labelled as p, q, r and s. Any given be or more statement(s) in Column-II.			
1.	For component of a vector $\vec{A} = (3\hat{i} + 4\hat{j} - 5\hat{k})$, match the following table :				
	Column I	Column II			
	(A) Along y-axis	(P) 5 unit			
	(B) Along another vector $(2\hat{i} + \hat{j} + 2\hat{k})$	(Q) 4 unit			
	(C) Along another vector $(\hat{6i} + \hat{8j} - 10\hat{k})$	(R) Zero			
	(D) Along another vector $(-3\hat{i} - 4\hat{j} + 5\hat{k})$	(S) None			
2.	Match the integrals (given in column - II) with the given fund	ctions (in column - I)			
	Column - I	Column - II			
	(A) $\int \sec x \tan x dx$	$(P) - \frac{\cos ec Kx}{K} + C$			
	(B) $\int \csc x \cot Kx dx$	$(\mathbb{Q}) - \frac{\cot Kx}{K} + C$			
	(C) $\int \csc^2 Kx dx$	(R) $\sec x + C$			
	(D) $\int \cos Kx dx$	(S) $\frac{\sin Kx}{K} + C$			
3.	Match the statements given in Column-I with statements give	/en in Column - II			
	Column - I	Column - II			
	(A) if $ \vec{A} = \vec{B} $ and $ \vec{A} + \vec{B} = \vec{A} $ then	(P) 90°			
	angle between \vec{A} and \vec{B} is (B) Magnitude of resultant of two forces	(Q) 120°			
	$\left \vec{F}_1 \right = 8N \text{ and } \left \vec{F}_2 \right = 4 N \text{ may be}$				
	(C) Angle between $\vec{A} = 2\hat{j} + 2\hat{j} \& \vec{B} = 3\hat{k}$ is	(R) 12 N			
	(D) Magnitude of resultant of vectors $\vec{A} = 2 \hat{i} + \hat{j}$	(S) $\sqrt{14}$			
	& $\vec{B} = 3 \hat{k}$ is				

etoosindia.com

BASIC MATHS & VECTOR

Exercise # 4 PART - 1

- The vectors \vec{A} and \vec{B} are such that 3. 1. $\left|\vec{A} + \vec{B}\right| = \left|\vec{A} - \vec{B}\right|$. The angle between vectors \vec{A} and ₿ is – [AIPMT 2006] (A) 90° **(B)** 60° (C) 75° **(D)** 45°
- PREVIOUS YEAR (NEET/AIPMT)

Six vectors, \vec{a} through \vec{f} have the magnitudes and directions indicated in the figure. Which of the following statements is true?

[AIPMT 2010]

If vectors

4.

$$\vec{A} = \cos \omega t \hat{i} + \sin \omega t \hat{j}$$
 and $\vec{B} = \cos \frac{\omega t}{2} \hat{i} + \sin \frac{\omega t}{2} \hat{j}$

are functions of time, then the value of t at which they are orthogonal to each other is :

[Re-AIPMT 2015]

(B) $t = \frac{\pi}{4\omega}$ (A)t = 0

(C)
$$t = \frac{\pi}{2\omega}$$
 (D) $t = \frac{\pi}{\omega}$

If $|\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B}$, then the value of $|\vec{A} + \vec{B}|$ is : 2. [AIPMT 2007]

> (A) $\left(A^2 + B^2 + \frac{AB}{\sqrt{3}}\right)^{1/2}$ $(\mathbf{B})\mathbf{A} + \mathbf{B}$ $(\mathbb{C})\left(A^2+B^2+\sqrt{3}\,AB\right)^{1/2}$ (D) $(A^2 + B^2 + AB)^{1/2}$

> > etoosindia.com

MOCK TEST

STRAIGHT OBJECTIVE TYPE						
1.	The product of all the so (A) 2	lutions of the equation (x - (B) - 4	$(C)^{2} - 3 x - 2 + 2 = 0$ is	(D) none of these		
2.	The number of solutions (A) zero	of the equation log(-2x) (B) 1	$= 2 \log (x + 1)$ is (C) 2	(D) none		
3.	Greatest integer less that (A) 4	n or equal to the number le (B) 3	$\log_2 15. \log_{1/6} 2. \log_3 1/6$ is (C) 2	(D) 1		
4.	The number of solutions o (where [.] denotes greates (A) 2	f [x]-2x =4 is t integer function) (B)4	(C) 3	(D) Infinite		
5.	The solution set of the inequation $1 + \log_{\frac{1}{3}} (x^2 + x + 1) > 0$ is					
	$(A) (-\infty, -2) \cup (1, \infty)$	(B) [-1, 2]	(C) (-2, 1)	$(\mathbb{D})(-\infty,\infty)$		
6.	Number of values of x satisfying the equations $5\{x\} = x + [x]$ and $[x] - \{x\} = \frac{1}{2}$ is					
	(A) 1	(B) 2	(C) 3	(D) 4		
7.	If $ x^2-9 + x^2-4 = 5$, then the set of values of x is					
	$(\mathbb{A}) (-\infty, -3) \cup (3, \infty)$	(B) $(-\infty, -2) \cup (3, \infty)$	(C) (−∞, 3)	(D) $[-3, -2] \cup [2, 3]$		
8.	If $\frac{ \mathbf{x}+2 -\mathbf{x} }{\mathbf{x}} < 2$, then the	ne set of values of x is				
	$(A) (-\infty, 1) \cup (2, \infty)$	$(\mathbf{B})(-\infty,0)\cup(1,\infty)$	(\mathbb{C}) $(-\infty, -1) \cup (0, \infty)$	(D) none of these		
9.	Solution set of the inequality $\log_e^2 [2x] - \log_e [2x] \le 0$ is					
	(A)[1,3)	(B) (0,3)	(C) {1,2}	$(\mathbb{D})\left[\frac{1}{2}, \frac{3}{2}\right]$		
10.	Solution set of $ x^2 - 5x + 7 $ (A) [-2, 7]	$ x^2-5x-14 = 21$ is (B) $(-\infty, -2] \cup [7, \infty)$	(C)[7,∞)	(D) (-∞,-2]		
11.	The set of real value(s) o (A) [0, 4)	f p for which the equation (B) $(-4, 4) - \{0\}$	2x+3 + 2x-3 = px (C) R - {4, -4, 0}	+ 6 has exactly two solutions is (D) {0}		
12.	$e^{e^{(n n^3)}}$ is simplified to (A) e^3	(B) <i>l</i> n 3	(C)3	(D) $ln(ln 3)$		
13.	If \vec{a} , \vec{b} are unit vectors su	ch that $(\vec{a} + \vec{b}) \cdot \{(2\vec{a} + 3)\}$	\vec{b}) × ($\vec{3}\vec{a} - 2\vec{b}$) } = 0, then	angle between \vec{a} and \vec{b} is -		
		(D) 11/2		(D) mueterminate		

etoosindia.com

India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION (145

11th Class Modules Chapter Details

PHYSICS

CHEMISTRY

Module-1

- 1. Physical World & Measurements
- 2. Basic Maths & Vector
- 3. Kinematics

Module-2

- 1. Law of Motion & Friction
- 2. Work, Energy & Power

Module-3

- **1.** Motion of system of
- particles & Rigid Body
- 2. Gravitation

Module-4

- 1. Mechanical Properties of Matter
- 2. Thermal Properties of Matter

Module-5

- 1. Oscillations
- 2. Waves

Module-1(PC)

- 1. Some Basic Conceps of Chemistry
- 2. Atomic Structure
- 3. Chemical Equilibrium
- **4.** Ionic Equilibrium

Module-2(PC)

- 1. Thermodynamics & Thermochemistry
- 2. Redox Reaction
- **3.** States Of Matter (Gaseous & Liquid)

Module-3(IC)

- 1. Periodic Table
- 2. Chemical Bonding
- 3. Hydrogen & Its Compounds
- 4. S-Block

Module-4(OC)

- 1. Nomenclature of
- Organic Compounds
- 2. Isomerism
- 3. General Organic Chemistry

Module-5(OC)

- 1. Reaction Mechanism
- 2. Hydrocarbon
- **3.** Aromatic Hydrocarbon
- 4. Environmental Chemistry & Analysis Of Organic Compounds

BIOLOGY

Module-1

- 1. Diversity in the Living World
- 2. Plant Kingdom
- 3. Animal Kingdom

Module-2

- 1. Morphology in Flowering Plants
- **2.** Anatomy of Flowering Plants
- **3.** Structural Organization in Animals

Module-3

- 1. Cell: The Unit of Life
- 2. Biomolecules
- 3. Cell Cycle & Cell Division
- 4. Transport in Plants
- 5. Mineral Nutrition

Module-4

- 1. Photosynthesis in Higher Plants
- 2. Respiration in Plants
- 3. Plant Growth and Development
- 4. Digestion & Absorption
- 5. Breathing & Exchange of Gases

Module-5

- Body Fluids & Its Circulation
 Excretory Products & Their Elimination
- **3.** Locomotion & Its Movement
- 4. Neural Control & Coordination
- **5.** Chemical Coordination and Integration

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

12th Class Modules Chapter Details

PHYSICS

Module-1

- 1. Electrostatics
- 2. Capacitance

Module-2

- 1. Current Electricity
- 2. Magnetic Effect of Current and Magnetism

Module-3

- 1. Electromagnetic Induction
- 2. Alternating Current

Module-4

- 1. Geometrical Optics
- 2. Wave Optics

Module-5

- 1. Modern Physics
- 2. Nuclear Physics
- 3. Solids & Semiconductor Devices
- 4. Electromagnetic Waves

CHEMISTRY

Module-1(PC)

- 1. Solid State
- 2. Chemical Kinetics
- **3.** Solutions and Colligative Properties

Module-2(PC)

- 1. Electrochemistry
- 2. Surface Chemistry

Module-3(IC)

- 1. P-Block Elements
- 2. Transition Elements (d & f block)
- 3. Co-ordination Compound
- 4. Metallurgy

Module-4(OC)

- 1. HaloAlkanes & HaloArenes
- Alcohol, Phenol & Ether
 Aldehyde, Ketone &
- Carboxylic Acid

Module-5(OC)

- 1. Nitrogen & Its Derivatives
- 2. Biomolecules & Polymers
- 3. Chemistry in Everyday Life

BIOLOGY

Module-1

- 1. Reproduction in Organisms
- 2. Sexual Reproduction in
- Flowering Plants
- 3. Human Reproduction
- 4. Reproductive Health

Module-2

- **1.** Principles of Inheritance and Variation
- 2. Molecular Basis of Inheritance
- **3.** Evolution

Module-3

- 1. Human Health and Disease
- 2. Strategies for Enhancement in
- Food Production
- 3. Microbes in Human Welfare

Module-4

- **1.** Biotechnology: Principles and Processes
- 2. Biotechnology and Its
- Applications
- 3. Organisms and Populations

Module-5

- 1. Ecosystem
- 2. Biodiversity and Conservation
- 3. Environmental Issues

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do