This PDF is the Sample PDF taken from our Comprehensive Study Material for NEET & AIIMS

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

ETOOS Comprehensive Study Material For NEET & AIIMS

CHAPTER

PERIODIC TABLE

If you memorize the periodic table it will speed you up if you're a chemist, but by and large, the reason you have a periodic table is so that you can store that information outside of your body. That way it frees up some part of your brain to do something else.

"BILLNYE"

INTRODUCTION

he chapter gives an insight to the contribution made by different scientists to arrange the known elements in a manner which could be smooth and informative and the elements properties could justify its position. Thus what we see in the form of modern periodic table today follow a logical sequence of electronic configuration capable enough to explain the trend in physical and chemical properties of the elements.

At present 118 elements are known. of them, the recently discovered elements are man made. Efforts to synthesise new elements are continuing. With such a large number of elements it is very difficult to study individually the chemistry of all these elements and their innumerable compounds individually. To ease out this problem, scientists searched for a systematic way to organise their knowledge by classifying the elements.

(a) Along a period acide nature increases:
(b) Down the group basic nature increases:
Li Be B C N O F
Na Mg Al S P S C

$$X_A - X_0 > 2.3$$
 $X_A - X_0 = 2.3$ $X_A - X_0 < 2.3$
Hasic Ampheteric Acidic
i.e. when in periodic table the distance between the element and oxygen increases, basic character increases.
Not: Expose S Co
acidic character decreases
PTOOS KEY POINTS
Note: BeO, ALO, ZnO, SnO, PbO, SnO, PbO, ShO, etc. are amphoteric oxides.
CO, H,O, NO, NO, O etc. are neutral oxides.
Acidic strength of oxide and oxyacid x. Electronegativity
BO, CO NO, NO, O etc. are neutral oxides.
Acidic strength of oxide and oxyacid x. Electronegativity
BO, So SeO, STEO, HNO, SH2, OS, SH3BO, HCO, SHBRO, S H0, OS, SNO, 900, Sh3, O, 900,

	Etoos Tips	& Formulas
	important fa	acts to remember
1.	Lowest electronegativity	: Cs
2.	Highest electronegativity	: F
3.	Highest ionisation potential	: He
4.	Lowest ionisation potential	: Cs
5.	Lowest electron affinity	: Noble gases
6.	Highest electron affinity	: Chlorine
7.	Least electropositive element	: F
8.	Lowest m. pt. metal	: Hg
9.	Highest m. pt. and b. pt. metal	: W (Tungsten)
10.	Lowest m. pt. and b. pt. non metal	: He
11.	Notorious element	: Hydrogen
12.	Lightest element	: Hydrogen
13.	Smallest atomic size	: H
14.	Largest atomic size	: Cs
15.	Largest anionic size	: I-
16.	Smallest cation	: H ⁺
17.	Most electropositive element	: Cs
18.	Element with electronegativity	
	next to Fluorine	: Oxygen
19.	Group containing maximum no.	
	of gaseous elements in periodic table	: Zero group
20.	Total number of gaseous elements	:
	in periodic table	: 11 (H, N, O, F, Cl, He, Ne, Ar, Kr, Xe, Rn)
21.	Total number of liquid elements	
	in periodic table	: 6 (Ga, Br, Cs, Hg, Fr, Uub)
22.	Liquid element of radioactive nature	: Fr
23.	Total number of radioactive elements	
	in periodic table	: 25
24.	Volatile d block elements	: Zn, Cd, Hg, Uub
25.	Element containing no neutron	: Н
26.	Most abundant element on earth	: Oxygen
27.	Most abundant metal on earth	: Al
28.	Element having maximum tendency	
	for catenation	: Carbon
29.	Non metal having highest m. pt., b.pt.	: Carbon (dimond)
30.	Metals showing highest oxidation number	: Os (+8), Ru
31.	Most electrovalent compound	: CsF
32.	Most stable carbonate	$: Cs_2CO_3$

SOLV	ED EX	XAMP	LE

Ex. 1 Following are the valence shell electronic Ex. 5 configurations of some elements. (i) $3s^2 3p^5$ (ii) $3d^{10} 4s^2$

> (iii) $2s^2 3p^6 4s^1$ (iv) $1s^2 2s^2$ Find out the blocks to which they belong in the

Ans. (i) p-block (ii) d-block (iii) s-block (iv) s-block

Sol. The block of the elements depend on the type of sub-shell which receive the last electron. In case of (i) it enters in 3p-subshell, (ii) z it enters 3d-subshell, Sol.

- (II) z it enters 3d-subsnell,
- (iii) it enters 4s-subshell and
- (iv) it enters 2s-subshell.
- **Ex. 2.** A M²⁺ ion derived from a metal in the first transition metal series has four electrons in 3d subshell. What element might M be ?
- Ans. Chromium
- - :. Electron configuration of M is $[Ar]^{18} 4s^1 3d^5$ (and not $4s^2 3d^4$)

So total number of electrons = 24.

Hence, metal M is chromium (Cr).

- **Ex.3** Find out the group of the element having the electronic configuration, $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$.
- Ans. As last electron enters in d-subshell, therefore this belongs to d-block. For d-block element the group number is equal to the number of valence shell electrons + number of electrons in (n-1) dsubshell.

So, group number = 6 + 2 = 8.

- $\label{eq:stars} \begin{array}{ll} \textbf{Ex.4} & \mbox{Arrange the following ions in the increasing order} \\ & \mbox{of their size : } Be^{2+} \ , Cl^- \ , S^{2-} \ , Na^+ \ , Mg^{2+} \ , Br^- \ ? \end{array}$
- Ans. $Be^{2+} < Mg^{2+} < Na^+ < Cl^- < S^{2-} < Br^-$
- Sol. Be^{2+} is smaller than Mg^{2+} as Be^{2+} has one shell where as Mg^{2+} has two shells.

 Mg^{2+} and Na^+ are isoelectronic species : Ionic radius $\propto 1/nuclear$ charge.

 Cl^- and S^{2-} are isoelectronic species : Ionic radius $\propto 1/nuclear$ charge.

 Cl^- is smaller than Br^- as Cl^- has three shells where as Br^- has four shells.

In Column-I, there are given electronic configurations of some elements. Match these with the correct metals given in Column-II :

Column-IColumn-II(A) ns^2, np^5 (p) Chromium(B) $(n-1) d^{10}, ns^1$ (q) Copper(C) $(n-1) d^5, ns^1$ (r) Krypton(D) $(n-1) d^{10}, ns^2, np^6$ (s) Bromine(A) \rightarrow (s); (B) \rightarrow (q); (C) \rightarrow (p); (D) \rightarrow (r).(A) ns^2np^5 is general valence shell electron configuration of halogens. So this configuration belongs to bromine.

(B) $(n-1) d^{1-10} ns^{1-2}$; This is electron configuration of d-block elements. As it contains $(n-1) d^{10}ns^1$ configuration it belongs to copper.

(C) $(n-1) d^{1-10} ns^{1-2}$; This is electron configuration of d-block elements. As it contains $(n-1) d^5 ns^1$ configuration it belongs to chromium.

(D) Noble gases has valence shell electron configuration $ns^2 np^6$, so it belongs to krypton.

Ex.6 Match the metals given in Column-II with their type given in Column-I :

Column-I	Column-II
(A) Metalloid	(p) Sulphur
(B) Radioactive	(q) Gold
(C) Transition metal	(r) Arsenic
(D) Chalcogen	(s) Uranium
$(\mathbf{A}) \rightarrow (\mathbf{r}); (\mathbf{B}) \rightarrow (\mathbf{s}); (\mathbf{C})$	$\mathbb{C}) \rightarrow (q); (\mathbf{D}) \rightarrow (p)$

Sol. (A) Arsenic is a metalloid because it behaves as metal (forming cation, As³⁺-AsCl₃) as well as nonmetal (forming anion, As³⁻-AsH₂).

(B) Uranium is a radioactive element.

(C) Those elements which in their neutral atoms or in most common oxidation state have partially filled d-orbitals are called as transition elements. Gold in its +3 oxidation state has electron configuration $[Xe]^{54}$, $5d^86s^0$.

(D) 16th group elements like oxygen and sulphur are ore forming elements and therefore are called as chalcogens.

etoosindia.com

Ans.

	Exercise # 1	SINGLE OBJ	IECTI	VE NEE	T LEVEL
1.	Which of the following s the element having e $1s^2, 2s^2p^6, 3s^1$	tatement is not correct for lectronic configuration	11.	Which cation has smalle (A) K ⁺ (C) Li ⁺	est radius (B) Na ⁺ (D) Be ²⁺
	 (A) It is a monovalent ele (B) It forms basic oxide (C) It is a non-metal 	ectropositive	12.	The radii of F, F ⁻ , O and (A) $O^{2^-} > F^- > O > F$	O ⁻² are in the order of (B) O ²⁻ > F ⁻ > F > O (D) O ²⁻ > C = F ⁻ > F
2.	 (D) It has low electron at Which of these dose not the elements (A) Bonding behaviour 	(B) Electronegativity	13.	(C) $F > O^{-} > F > O$ Which of the following F (A) Na ⁺ (C) CF	(D) $O^2 > O > F > F$ has the smallest size (B) Mg^{+2} (D) F^-
3.	(C) Ionization energy If an atom has electronic	(D) Neutron/proton ratio configuration	14.	Which of the following i (A) Cl^{-}	s largest (B) S ²⁻
	 (A) Second group (C) Fifth group 	it will be placed in(B) Third group(D) Sixth group	15.	Which of the follow progressive increase do	(D) F ring property displays wn a group in the Bohr's
4.	All the s-block elements placed in the groups (A) IA and IIA	s of the periodic table are (B) IIIA and IVA		periodic table (A) Electronegativity (C) Ionization potential	(B) Electron affinity(D) Size of the atom
5.	 (C) B sub groups The electronic configura (A) ns²np⁶ (C) ns²np⁵ The ratio between radii of the ratio between radii of the ratio between radii of the radii of th	 (D) VA to VIIA tion of halogen is (B) ns²np³ (D) ns² of He⁺ ion and H atom is 	16.	Atomic radii of fluorine a are respectively given b (A) 0.762, 1.60 (B) 1.60, 1.60 (C) 0.72, 0.72	und neon in angstrom units y
	(A) $\frac{1}{2}$	(B) 1	17.	 (D) None of these values Which ion has greatest r (A) H⁻ 	s adius in the following (B) F ⁻
	$(\mathbb{C}) \frac{3}{2}$	(D) 2		(C) Br-	(D) I-
7.	The smallest among the s (A) Na ⁺ (C) Ba ²⁺	following ions is (B) Mg ²⁺ (D) Al ³⁺	18.	(A) Al (C) P	(B) Si (D) Mg
8.	Which is smallest in size (A) O^{2-}	(B) C ⁴⁻ (D) N ³⁻	19.	Which one of the follow value of ionic radius (A) O ^{2–}	(B) B ³⁺
9.	Which of the following h (A)Al (C)Al ⁺²	(B) Al ⁺ (D) Al ⁺³	20.	On going down a main table (example Li to Cs in expected trend of change	(U) F ⁻ sub-group in the periodic n IA or Be to Ra in IIA), the es in atomic radius is a
10.	Of the following, the one (A) Cl ⁺ (C) K ⁺	with largest size is (B) Ar (D) Ca ²⁺		 (A) Continuous increase (B) Continuous decrease (C) Periodic one, an increase (D) A decrease followed 	e ease followed by a decrease by increase

PERIODIC TABLE

Exercise # 2 SINGLE OBJECTIVE 1. Atomic number of Ag is 47. In the same group, the 9 atomic numbers of elements placed above and below Ag in Long form of periodic table will be : **(B)** 39, 79 (A) 29, 65 (C) 29, 79 **(D)** 39, 65 2. Element with electronic configuration as [Ar] 3d⁵ 4s¹ is placed in ____ in Modern periodic table : (A) IA (1st group), s-block (B) IB (7th group), d-block (C) VIB (8th group), d-block (D) VIB (6th group), d-block 10. 3. In modern periodic table, the element with atomic number Z = 118 will be : (A) Uuo; Ununoctium; alkaline earth metal (B) Uno; Unniloctium; transition metal (C) Uno; Unniloctium; alkali metal (D) Uuo; Ununoctium; noble gas 4. Which of the following is not an actinoid : (A) Curium (Z=96) **(B)** Californium (Z=98) (C) Uranium (Z=92) (D) Terbium (Z=65) 5. Which of the following statements is not correct 11. regarding hydrogen : (A) It resembles halogens in some properties. (B) It resembles alkali metals in some properties. (C) It can be placed in 17th group of Modern periodic table. (D) It cannot be placed in 1st group of Modern periodic table. The order of screening effect of electrons of s, p, d and 6. f orbitals of a given shell of an atom on its outer shell electrons is (A) s > p > d > f(B) f > d > p > s $(\mathbb{C}) p < d < s > f$ (D) f > p > s > d7. Which of the following is/are generally true regarding effective nuclear charge (Z_{eff}) : (A) It increases on moving left to right in a period. (B) It remains almost constant on moving top to bottom in a group.

- (C) For isoelectronic species, as Z increases, $\rm Z_{eff}$ decreases.
- (D) Both (A) and (B).
- 8. Which of the following is the correct order of size of the given species :

AIIMS	LE	VEL
-------	----	-----

Match the correct atomic radius with the element : S.No. Element Code Atomic radius (pm) (i) Be 74 (p) С 88 (ii) (q) (iii) 0 111 (r) В 77 (iv) (s) Ν 66 (v) (t) (A) (i) -r, (ii) -q, (iii) -t, (iv) -s, (v) -p(B) (i) -t, (ii) -s, (iii) -r, (iv) -p, (v) -q(C)(i)-r,(ii)-s,(iii)-t,(iv)-q,(v)-p(D) (i) -t, (ii) -p, (iii) -r, (iv) -s, (v) -q

- Select correct statement(s) about radius of an atom:(A) Values of Vander waal's radii are larger than those of covalent radii because the Vander
 - those of covalent radii because the Vander waal's forces are much weaker than the forces operating between atoms in a covalently bonded molecule.
- (B) The metallic radii are smaller than the Vander waal's radii, since the bonding forces in the metallic crystal lattice are much stronger than the Vander waal's forces.
- (C) Both (A) & (B)
- (D) None of these
- Which of the following order of atomic / ionic radius is not correct ?

(A) $F < Cl < Br < I$	(B) $Y^{3+} > Sr^{2+} > Rb^+$
(C) Nb \approx Ta	(D) $Li > Be > B$

- 12. The size of isoelectronic species F^- , Ne and Na⁺ is affected by :
 - (A) nuclear charge (Z)
 - (B) valence principal quantum number (n)
 - (C) electron-electron interaction in the outer orbitals
 - (D) none of the factors because their size is the same.

13. Which of the following order of radii is correct :

(A) $Li < Be < Mg$	(B) $H^+ < Li^+ < H^-$
$(\mathbb{C}) O < F < Ne$	(D) $Li < Na < K < Cs < Rb$

- 14. Which one of the following statements is incorrect in relation to ionisation enthalpy?
 - (A) Ionization enthalpy increases for each successive electron.
 - (B) The greatest increase in ionization enthalpy is experienced on removal of electron from core of noble gas configuration.
 - (C) End of valence electrons is marked by a big jump in ionization enthalpy.
 - (D) Removal of electron from orbitals bearing lower n value is easier than from orbitals having higher n value.

etoosindia.com

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

	Exercis	e # 3	PART - 1	MATRIX MATCH COLUMN		
1.	Match the e	Match the electronic configurations of the elements given in column-(I) with their correct characteristic(s)				
	(1.e. propert	ies for given co	onfiguration) given in	column-(II).		
	Column	-1		Column-II		
	(A) $1s^2$	5		(p) Element shows highest negative oxidation state.		
	(B) $1s^2 2s^2 2$	p ^o		(q) Element shows highest first ionisation enthalpy.		
	(C) $1s^2 2s^2 2$	p° 3s ² 3p ⁵		(r) Element shows highest electronegativity on Pauling scale.		
	(D) $1s^2 2s^2 2$	p ²		(s) Element shows maximum electron gain enthalpy (most exothermic).		
2.	Match Colur correct ansv	Match Column–I (atomic number of elements) withColumn–II (position of element in periodic table) and select the correct answer using the codes given below :				
	Column-l			Column-II		
	(A) 19			(p) p-block		
	(B) 22			(q) f-block		
	(C) 32			(r) d-block		
	(D) 64			(s) s-block		
3.	Match the sp	Match the species/elements listed in column I with their characteristic listed in column II.				
	Column I			Column II		
	(A) SO ₂ , NO	$^{-3}, CO_{3}^{-2}$		(p) Semi-metals		
	(B) Ge, As, S	Sb		(q) Inert gases		
	(C) Ar, Kr, X	e		(r) Isoelectronic species		
	(D) Ca, Sr, B	a		(s) Alkaline earth metals		
4.	Match the va listed in colu	Match the values of ionization energy and electron gain enthalpi listed in column I with characteristic(s) of elements listed in column II.				
	Column]	[Column II		
	$\Delta_1 H_1$,	$\Delta_1 H_2$,	$\Delta_{e\sigma}$ H(in kJ mol ⁻¹),		
	(A) 2372	5251	+48	(p) Elements which acts as a strong reducing agent		
	(B) 419	3051	-48	(q) Elements which exists as a monoatomic molecule		
	(C) 1681	3374	-333	(r) Least reactive non-metal		
	(D) 1008	1846	-295	(s) Elements which acts as a strong oxidising agent		
				(t) Element which oxide is a stronger basic in nature		

46

PERIODIC TABLE

	Exercise # 4 PART - 1		PREVIOUS YEAR ((NEET/AIPMT)
1.	Correct order of Ist ionisation potential (IP) among following elements Be, B, C, N, O is [CBSE AIPMT 2001] (A) B < Be < C < O < N (B) B < Be < C < N < O	7.	Which of the following an atom has the lowest (A) $1s^2$, $2s^22p^5$ (C) $1s^2$, $2s^22p^5$, $2s^1$	electronic configuration of ionisation enthalpy ? [CBSE AIPMT 2007] (B) 1s ² , 2s ² 2p ³
	(C) Be < B < C < N < O		(C) 18 ² , 28 ² 2p ² , 38 ²	(D) $13^{\circ}, 28^{\circ}2p^{\circ}$
2.	(b) $B < B < C < O < N$ An atom has electronic configuration $1s^2$, $2s^22p^6$, $3s^23p^63d^3$, $4s^2$, you will place it in [CBSE AIPMT 2002] (A) fifth group	8.	The correct order of de enthalpy of Ti(22), Cr(2- (A) $Cr > Mn > V > Ti$ (B) $V > Mn > Cr > Ti$ (C) $Mn > Cr > Ti > V$	creasing second ionisation 4) and Mn(25) is [CBSE AIPMT 2008]
	(B) fifteenth group		$(\mathbf{D})\mathrm{Ti}\!>\!\mathrm{V}\!>\!\mathrm{Cr}\!>\!\mathrm{Mn}$	
	(C) second group(D) third group	9.	Which of the following react with sodium hydro	g oxides is not expected to oxide?
3.	Which of the following order is wrong ? [CBSE AIPMT 2002] (A) $NH_3 < PH_3 < AsH_3 - Acidic$ (B) $Li < Be < B < C - 1st Ionisation potential$		$(A) B_2O_3$ (C) SiO_2	[CBSE AIPMT 2009] (B) CaO (D) BaO
	(D) $Li^{+} \le Li^{+} \le C^{-}$ Fit folloadin potential (C) $Al_2O_3 \le MgO \le Na_2O \le K_2O - Baisc$ (D) $Li^{+} \le Na^{+} \le K^{+} \le Cs^{+} - Ionic radius$	10.	Which one of the elements with the following outer orbital configurations may exhibit the largest number of oxidation states? [CBSE AIPMT 2009]	
4.	The ions O^{2-} , F^- , $Na^+ Mg^{2+}$ and Al^{3+} are isoelectronic. Their ionic radii show		(A) 3d ³ , 4s ² (C) 3d ⁵ , 4s ²	 (B) 3d⁵, 4s¹ (D) 3d², 4s²
	 (A) an increase from O²⁻ to F⁻ and then decrease from Na⁺ to Al³⁺ (B) a decrease from O²⁻ to F⁻ and then increase from Na⁺ to Al³⁺ (C) a significant increase from O²⁻ to Al³⁺ 	11.	Amongst the elements configurations, which ionisation energy ? (A) [Ne] 3s ² 3p ³ (C) [Ar] 3d ¹⁰ , 4s ² 4p ³	with following electronic one may have the highest [CBSE AIPMT 2009] (B) [Ne] 3s ² 3p ² (D) [Ne] 3s ² 3p ¹
	(D) a significant decrease from O^{2-} to Al^{3+}		Which of the following represents the correct order	
5.	 Ionic radii are [CBSE AIPMT 2004] (A) inversely proportional to effective nuclear charge (B) inversely proportional to square of effective nuclear charge (C) directly proportional to effective nuclear charge 		 of increasing electron g sign for the elements O, (A) Cl < F < O < S (B) O < S < F < Cl (C) F < S < O < Cl 	ain enthalpy with negative S, F and Cl? [CBSE AIPMT 2010]
	(D) directly proportional to square of effective nuclear charge	13.	(D) $S < O < CI < F$ The correct order of the c	lecreasing ionic radii among
6.	Identify the correct order of the size of the following. [CBSE AIPMT 2007]	*	the following isoelectro	ic species is [CBSE AIPMT 2010]
	(A) $Ca^{2+} < K^+ < Ar < S^{2-} < Cl^-$		(A) $Ca^{2+} > K^+ > S^{2-} > Cl^-$	-
	(B) $Ca^{2+} < K^+ < Ar < Cl^- < S^{2-}$		(B) $Cl^{-} > S^{2-} > Ca^{2+} > K^{+}$	
	(C) $Ar < Ca^{2+} < K^+ < Cl^- < S^{2-}$ (D) $Ca^{2+} < Ar < K^+ < Cl^- < S^{2-}$		(C) $S^{2-} > Cl^{-} > K^{+} > Ca^{2+}$ (D) $K^{+} > Ca^{2+} > Cl^{-} > S^{2-}$	
}	etoosindia	.com		

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

48

		мос	CK TEST				
		STRAIGHT C	BJECTIVE TYPE				
	Consider the following s	statements;					
	(I) Rutherford name wa	s associated with the dev	elopement of periodic table	e.			
	(II) A metal M having el	ectronic configuration 1s	² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , 3d ¹⁰ , 4s ¹	is d-block element.			
	(III) Diamond is not an e	lement.					
	(IV) The electronic confi	guration of the most elect	tronegative element is 1s ² , 2	$2s^2$, $2p^5$, and select the correct one from			
	the given codes.						
	(A) I, II, IV	(B) I, II, III, IV	(C) II, IV	(D) I, III, IV			
	The correct order of second	ond ionisation potential of	of carbon, nitrogen, oxyger	and flourine is :			
	$(\mathbf{A})\mathbf{C} > \mathbf{N} > \mathbf{O} > \mathbf{F}$	$(\mathbf{B})\mathbf{O} > \mathbf{N} > \mathbf{F} > \mathbf{C}$	$(\mathbb{C}) O > F > N > C$	$(\mathbf{D}) \mathbf{F} > \mathbf{O} > \mathbf{N} > \mathbf{C}$			
	The electron gain enthal $F = -332$ $C = -349$	pies of halogens in kJ/m Br = -324 J = -295	ol are as given below.				
	The less negative value $T = -332$, $C = -349$,	for F as compared to that	of Cl is due to :				
	(A) strong electron-elect	tron repulsions in the cor	nnact 2 n- subshell of F				
	(R) weak electron-electr	on repulsions in the com	npact $2p$ -subshell of Cl				
	(C) smaller electronegat	ivity value of F than Cl	paet 2p- subsiteri of Ci				
	(\mathbf{D}) (A) and (B) both	ivity value of 1 than CI					
	Which of the following	statement is not correct?	,				
(A) The first ionisation energies (in kJ/mol) of carbon, silicon, germaniu, tin and lead are 1086, 786, 761, 708 a				nd lead are 1086, 786, 761, 708 and 715			
	(B) Down the group ele	ctronegativity decreases	from B to Tl in boron famil	V			
	(C) Among oxides of the	(B) Down the group, electronegativity decreases from B to 11 in boron family.					
	(D) The 4f- and 5f- inner structure.	transition elements are p	placed separately at the botto	om of the periodic table to maintain its			
	Which of the following of	order is correct?					
	(A) $F > N > C > Si > Ga$ -	- non-metallic character.	(B) $F > Cl > O > N -$	oxidising property.			
	(C) $C < Si > P > N - elec$	tron affinity value.	(D) All of these.				
	If the same element is for	rming oxides in different	avidation state than :				
	(A) that avide will be not	utral in natura in which a	oxidation state then.	ovidation state			
	(A) that oxide will be here	theat agidia in natura in y	which cloment will be in the	highest evidetion state			
	(b) that oxide will be any	nest acture in nature in whi	ah alamant will have the hi	alignest oxidation state.			
	(C) that oxide will be an (\mathbf{D}) that oxide will be his	lphoteric in nature in whi	ch element will be in the hi	ghest oxidation state.			
	(D) that oxide will be hig	gry basic in nature in white	ch element will be in the my	gnest oxidation state.			
	What will be the order o	f Ist ionisation energy					
	$(\mathbf{A})\mathbf{Li} > \mathbf{Na} > \mathbf{K}$	$(\mathbf{B})\mathbf{K} > \mathbf{Li} > \mathbf{Na}$	(\mathbb{C}) Na>Li>K	(D) $Li > K > Na$			
	Which of the following energy	configurations represen	ts atoms of the elements l	naving the highest second ionization			
	(A) $1s^2 2s^2 2p^4$	(B) $1s^2 2s^2 2p^6$	(C) $1s^2 2s^2 2p^6 3s^1$	(D) $1s^2 2s^2 2p^6 3s^2$			
	The first ionization note	ntials in electron volts of	fnitrogen and oxygen aton	as are respectively given by			
	(Λ) 14.6 13.6	(\mathbf{R}) 13.6 14.6	(C) 13.6, 13.6	$m_{146} 146$			
	(1) 14.0, 13.0	(1) 13.0, 14.0	(0) 15.0, 15.0	(1) 11.0, 11.0			
	The elements which occ	upy the peaks of ionisati	on energy curve, are				
	(A) Na, K, Rb, Cs	(B) Na, Mg, Cl, I	(C) Cl, Br, I, F	(D) He, Ne, Ar, Kr			

11th Class Modules Chapter Details

PHYSICS

CHEMISTRY

Module-1

- 1. Physical World & Measurements
- 2. Basic Maths & Vector
- 3. Kinematics

Module-2

- 1. Law of Motion & Friction
- 2. Work, Energy & Power

Module-3

- **1.** Motion of system of
- particles & Rigid Body
- 2. Gravitation

Module-4

- 1. Mechanical Properties of Matter
- 2. Thermal Properties of Matter

Module-5

- 1. Oscillations
- 2. Waves

Module-1(PC)

- 1. Some Basic Conceps of Chemistry
- 2. Atomic Structure
- 3. Chemical Equilibrium
- **4.** Ionic Equilibrium

Module-2(PC)

- 1. Thermodynamics & Thermochemistry
- 2. Redox Reaction
- **3.** States Of Matter (Gaseous & Liquid)

Module-3(IC)

- 1. Periodic Table
- 2. Chemical Bonding
- 3. Hydrogen & Its Compounds
- 4. S-Block

Module-4(OC)

- 1. Nomenclature of
- Organic Compounds
- 2. Isomerism
- 3. General Organic Chemistry

Module-5(OC)

- 1. Reaction Mechanism
- 2. Hydrocarbon
- **3.** Aromatic Hydrocarbon
- 4. Environmental Chemistry & Analysis Of Organic Compounds

BIOLOGY

Module-1

- 1. Diversity in the Living World
- 2. Plant Kingdom
- 3. Animal Kingdom

Module-2

- 1. Morphology in Flowering Plants
- **2.** Anatomy of Flowering Plants
- **3.** Structural Organization in Animals

Module-3

- 1. Cell: The Unit of Life
- 2. Biomolecules
- 3. Cell Cycle & Cell Division
- 4. Transport in Plants
- 5. Mineral Nutrition

Module-4

- 1. Photosynthesis in Higher Plants
- 2. Respiration in Plants
- 3. Plant Growth and Development
- 4. Digestion & Absorption
- 5. Breathing & Exchange of Gases

Module-5

- Body Fluids & Its Circulation
 Excretory Products & Their Elimination
- **3.** Locomotion & Its Movement
- 4. Neural Control & Coordination
- **5.** Chemical Coordination and Integration

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

12th Class Modules Chapter Details

PHYSICS

Module-1

- 1. Electrostatics
- 2. Capacitance

Module-2

- 1. Current Electricity
- 2. Magnetic Effect of Current and Magnetism

Module-3

- 1. Electromagnetic Induction
- 2. Alternating Current

Module-4

- 1. Geometrical Optics
- 2. Wave Optics

Module-5

- 1. Modern Physics
- 2. Nuclear Physics
- 3. Solids & Semiconductor Devices
- 4. Electromagnetic Waves

CHEMISTRY

Module-1(PC)

- 1. Solid State
- 2. Chemical Kinetics
- **3.** Solutions and Colligative Properties

Module-2(PC)

- 1. Electrochemistry
- 2. Surface Chemistry

Module-3(IC)

- 1. P-Block Elements
- 2. Transition Elements (d & f block)
- 3. Co-ordination Compound
- 4. Metallurgy

Module-4(OC)

- 1. HaloAlkanes & HaloArenes
- Alcohol, Phenol & Ether
 Aldehyde, Ketone &
- Carboxylic Acid

Module-5(OC)

- 1. Nitrogen & Its Derivatives
- 2. Biomolecules & Polymers
- 3. Chemistry in Everyday Life

BIOLOGY

Module-1

- 1. Reproduction in Organisms
- 2. Sexual Reproduction in
- Flowering Plants
- 3. Human Reproduction
- 4. Reproductive Health

Module-2

- **1.** Principles of Inheritance and Variation
- 2. Molecular Basis of Inheritance
- **3.** Evolution

Module-3

- 1. Human Health and Disease
- 2. Strategies for Enhancement in
- Food Production
- 3. Microbes in Human Welfare

Module-4

- **1.** Biotechnology: Principles and Processes
- 2. Biotechnology and Its
- Applications
- 3. Organisms and Populations

Module-5

- 1. Ecosystem
- 2. Biodiversity and Conservation
- 3. Environmental Issues

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do