This PDF is the Sample PDF taken from our Comprehensive Study Material for NEET & AIIMS

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

ETOOS Comprehensive Study Material For NEET & AIIMS

CHAPTER

COORDINATION COMPOUNDS

Coordination is critical to any large scale event. That's the lesson we are learning.

"LYNETTE MILLER"

INTRODUCTION

ompounds formed due to combination of two or more simple stable salts, which retain their identity is solid as well as in dissolved state, are called coordination compounds. These are backbone of modern inorganic and bio-inorganic chemistry and chemical industry. The concept of co-ordination compounds arises from the complex formation tendency of transition elements. These compounds play a vital role in our lives, as chlorophyll of plants, vitamin B₁₂ and haemoglobin of animal blood are the co-ordination compounds of Mg, Co and Fe respectively. The co-ordination compounds play important role in analytical chemistry , polymerisation reactions, metallurgy and refining of metals, photography, water purification etc. Co-ordination compounds also find many applications in electroplating, textile dyeing and medicinal chemistry.

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

ISOMERISM IN COMPLEXES

Complex compounds that have the same molecular formula but have different structural /spacial arrangements of ligands are called isomers. These are of two types, namely structural and stereo isomers.

-Coordination position isomerism

STRUCTURAL ISOMERISM

- (i) **Ionisation Isomerism :** This type of isomerism is due to the exchange of groups between the complex ion and ions outside it. $[Co(NH_3)_5Br]SO_4$ is red -violet. An aqueous solution of it gives a white precipitate of $BaSO_4$ with $BaCl_2$ solution, thus confirming the presence of free SO_4^{2-} ions. In contrast $[Co(NH_3)_5SO_4]Br$ is red. A solution of this complex does not give a positive sulphate test with $BaCl_2$. It does give a cream coloured precipitate of AgBr with AgNO₃, thus confirming the presence of free Br^- ions. Other examples of ionisation isomerism are $[Pt(NH_3)_4Cl_2]Br_2$ and $[Pt(NH_3)_4Br_2]Cl_2$ and $[Co(en)_2NO_2.Cl]SCN$, $[Co(en)_2NO_2.SCN]Cl$ and $[Co(en)_2Cl.SCN]NO_2$.
- (ii) **Hydrate isomerism :** These isomers arise by the exchange of groups in the complex ion with water. Three isomers of $CrCl_3.6 H_2O$ are known. From conductivity measurements and quantitative precipitation of the ionised Cl^- , they have been given the following

$[Cr(H_2O)_6]Cl_3$	Violet
[Cr(H ₂ O) ₅ Cl]Cl ₂ .H ₂ O	Green
[Cr(H ₂ O) ₄ Cl ₂]Cl.2H ₂ O	Dark Green

(iii) Linkage Isomerism : This type of isomerism arises when the ligand attached to the central metal ion of a complex in different ways. Such ligands are called ambident ligands. Nitrite ion has electron pairs available for co-ordination both on N and O atoms.

Ex.

(a) [Co(NH₃)₅ONO]Cl₂ and pentaamminenitrito-o-cobalt(III) chloride (red)

(b) $[Mn(CO_5).SCN]^+$ pentacarbonylthiocyanto -S-manganese (II) ion and

[Co(NH₃)₅NO₂]Cl₂ pentaamminenitrito-N-cobalt-(III)-chloride (yellow)

[Mn(CO₅) (NCS]⁺ pentacarbonylthiocyanato –N-manganese (II) ion

etoosindia.com

India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION 201

- 1. CH₃B(OCH₃) is an organometallic compound but B(OCH₃) is not.
- 2. The closed ring complexes formed by polydenatate ligands are called Chelates. Chelation leads to stability.
- 3. Estimation of nickel (II) is done by complexing with dimethyl glyoxime (DMG) whereas that of Ca^{+2} and Mg^{2+} ions is done by titrating against EDTA.
- 4. Complex in which ligands can be substituted by other ligands are called labile complexes. For example $[Cu(NH_3)_4]^{2+}$ is a labile complex because NH₃ ligands can be substituted by CN⁻ ligands.

```
[Cu(NH_3)_4]^{2+} + 4 CN^- \rightarrow [Cu(CN)_4]_2 + 4NH_3
(less stable) (more stable)
```

5. Another type of geometrical isomerism is also shown by octahedral complexes of the type Ma_3b_3 .

if each trio of donor atoms occupy adjacent positions at the corner of an octahedral face, then it is called facial (fac) isomer and when the position are around the meridian of the octahedron, then it is called meridional (mer) isomer.

- 6. Haemoglobin is a complex of Fe, chlorophyll is a complex of Mg, vitamin B_{12} is a complex of Co.
- 7. σ -bond organometallic compounds generally contains a non-transition metal linked to carbon atom of alkyl group by σ bond. For example eg. R-MgX.
- 8. p-bonded organometallics are formed by donation of p-electrons of double bond to the metal atom. For example Zeise's salt K[PtCl₃ η^2 C₂H₄] and Ferrocene Fe(η^5 -C₃H₅)₂
- 9. Grignard's reagent is one of the most useful organometallic compounds. Due to the high polarity of $(C^{\delta}-Mg^{\delta^{+}})$ bond, it can be used to synthesise many organic compounds.

COORDINATION COMPOUND

SOLVED EXAMPLE

Ex. 1	A solution containing 0.319 $6H_2O$ was passed through the solution given out was n 0.125 M NaOH. The correct will be: [molecular weight o (A) [CrCl(H ₂ O) ₅]Cl ₂ .H ₂ O (B) [Cr(H ₂ O) ₆]Cl ₃ (C) [CrCl ₂ (H ₂ O) ₄]Cl.2H ₂ O (D) All are correct	9 gm of complex CrCl_3 . a cation exchanger and eutralised by 28.5 ml of formula of the complex f complex = 266.5]	Ex. 3 Ans. Sol.	Consider the follo (i) K_2 PtCl ₆ (iii) PtCl ₄ . 3NH ₃ their electrical co are: (A) 256, 0, 97, 404 (C) 256, 97, 0, 404 (A) The electrical con- upon the number
Ans. Sol.	(B) $Cl^{-}=HCl=NaOH$			aqueous solution:
	$nCl^- + nH^+ \longrightarrow nHCl$ Thus 1 mol of complex will f 1 mole of complex = n mol o mole of complex = $\frac{0.319}{266.5}$ =	form n mol of HCl f HCl = n mole of NaOH = 0.0012; mole of NaOH		(i) $R_2[1 CCI_6]$ (ii) $[Pt(NH_3)_2CI_4]$ = (iii) $[Pt(NH_3)_3CI_3]$ (aq)(iv) $[Pt(NH_3)_5C]$ Complex Nu
	used = $\frac{28.5 \times 0.125}{1000}$ = 0.002 So 0.0012 mole of complex = 0.0036 mole of HCl	36 0.0036 mole of NaOH = $\frac{1}{2} = 3 \text{ mole of HCl}$		(i) $K_2[PtCl_6]$ (ii) $[Pt(NH_3)_2Cl_4]$ (iii) $[Pt(NH_3)_3Cl_3]C$ (iv) $[Pt(NH_3)_5Cl]Cl$ So, the correct opt
	$\therefore \qquad 0.0012$ So complex is [Cr(H ₂ O) ₆]Cl ₃	n=3	Ex. 4	Give the order of cf (i) $C_2O_4^{2-}$ (iii) dien (A) iii>ii>i
Ex. 2	Calculate the effective atom atoms in the following comp (A) $[Cr(CO)_6]$ (C) $[Co(CN)_6]^4$ [Cr = 24 ; Fe = 26; Co = 27 numbers]	thic number of the metal plexes / complex ions. (B) $[Fe(CN)_6]^{3-}$ (D) $[Ni(NH_3)_6]^{2+}$ and Ni = 28 as atomic	Ans. Sol.	(C) ii>iii>i (C) As number of don bonds increase. S increase as oxalat and six donor atom
Ans.	(A) 36 (C) 37	(B) 35 (D) 38	Ex. 5	Write the structure of the following I
Sol.	EAN = Number of electrons Number of electrons donate (A) [Cr ⁰ (CO) ₆]; EAN = 24 + (B) [Fe ^{III} (CN) ₆] ³⁻ ; EAN = 23 (C) [Co ^{II} (CN) ₆] ⁴⁻ ; EAN = 25 (D) [Ni ^{II} (NH ₃) ₆] ²⁺ ; EAN = 26	s in metal atom or ion + ed by ligands to metal. 12=36; +12=35 +12=37; 5+12=38	Ans. Sol.	(A) potassium tetr (B) tetracarbonyl n (C) potassium tetr (D) potassium trise (A) $K_2[Zn^{II}(CN)_4]$ (C) $K_4[Ni^0(CN)_4]$ Refer IUPAC rule.

Consider the followi	ng cor	nplex	es :
(i) $K_2 PtCl_6$		(ii) P	$tCl_4.2NH_3$
(iii) $PtCl_4$. $3NH_3$		(iv) F	$PtCl_4$. 5NH ₃
their electrical cond	ductan	ce in	aqueous solutions
are :			
(A) 256, 0, 97, 404		(B) 4	04, 0, 97, 256
(C) 256, 97, 0, 404		(D) 4	04, 97, 256, 0
(A)			
The electrical condu- upon the number of	ctance of ions	of the	complexes depend on by them in the
aqueous solutions.		0	5
(i) $K_2[PtCl_6] \stackrel{aq}{\leq} 2$	2K+(ac	g) + [P	$tCl_{6}^{2-}(aq)$
(ii) $[Pt(NH_3)_2Cl_4] \stackrel{aq}{=}$	\geq [Pt	(NH ₃)	$_{2}\text{Cl}_{4}$] (aq)
(iii) [Pt(NH ₃) ₃ Cl ₃]Cl	aq	[Pt(N	$(H_3)_3 Cl_3]^+ (aq) + Cl^-$
(aq)(iv) [Pt(NH ₃) ₅ Cl]	$Cl_{3} \subset $	<u> </u> _[P₁	$t(NH_3)_5Cl]^{3+} + 3Cl^{-}$
Complex Num	iber of	fions	Expected
A			electrical
			conductance
(i) $K_2[PtCl_6]$	3		256
(ii) $[Pt(NH_3)_2Cl_4]$	0		0
(iii) [Pt(NH ₃) ₃ Cl ₃]Cl	2		97
$(iv) [Pt(NH_3)_5Cl]Cl_3$	4		404
So, the correct optio	n is (A	A).	
Give the order of chel	latinge	effect c	of following ligands.
(i) $C_2 O_4^{2-}$		(ii) E	DTA
(iii) dien			
(A) $iii > ii > i$		(B) i	>ii>iii
(\mathbb{C}) ii > iii > i		(D) i	>iii>ii
(C)			1 1 0
As number of donor	atoms	incre	ases the number of
increase as ovalato	dien a	nd EI	TA has two three
and six donor atoms	s respe	ctivel	y.
Write the structural	formu	la cor	responding to each
of the following IUP	AC na	imes :	
(A) potassium tetrac	yanido skel (0	ozinca	tte (II)
(C) potassium tetrac	vanon) uickels	ate(0)
(D) potassium tris(o)	(xalato)	alumi	nate (III)
(A) $K_{2}[Zn^{II}(CN)]$		(B) [Ni⁰(CO)₄]
$(C) K_{4}^{2}[Ni^{0}(CN)_{4}]$		(D) k	$K_3[Al^{III}(C_2O_4)_3]$

etoosindia.com

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

CHEMISTRY FOR NEET & AIIMS

	Exercise # 1	SINGLE OB	JECTI	VE NI	EET LEVEL
1.	In K_4 Fe(CN) ₆ (A) (CN) are linked with (B) (CN) are linked with (C) K are linked with s	th primary valency th secondary valency secondary valency	10.	The coordination num ion is (A) 2 (C) 6	mber of Pt in $[Pt(NH_3)_4Cl_2]^+$ (B) 4 (D) 8
2.	 (D) K are linked with r The co-ordination cuprammonium sulpha (A) 2 (C) 4 	non-ionic valency number of copper in te is (B) 6 (D) - 4	11.	 Which is the example (A) 2, 2-dipyridyl (B) Dimethyl glyoxim (C) Aminodiacetate i (D) Ethylene diammi 	of hexadentate ligand ne on ne tetra acetate ion [EDTA]
3.	Which of the following complex formation (A) Acetate (C) Thiocyanate	acts as a bidentate ligand in (B) Oxalate (D) EDTA	12.	 The coordination num compounds is (A) Same as primary (B) Sum of primary a (C) Same as seconda (D) Nona of these 	ber of a metal in coordination valency and secondary valencies ry valency
4.	[Co(en) ₂ Br ₂]Cl ₂ is (A) 2 (C) 5	(B) 6 (D) 4	13.	 Ligand in a complex s (A) Anions linked by metal atom or ion 	alt are coordinate bonds to a central
5.	Which of the following (A) Acetate (C) Cyanide	ligands forms a chelate (B) Oxalate (D) Ammonia		(B) Cations linked b tral metal atom or(C) Molecules linked tral metal atom or	y coordinate bonds to a cen- ion by coordinate bonds to a cen- ion
6.	 According to Werner's (A) Primary valency ca (B) Secondary valency (C) Primary and seconde ionized (D) Only primary vale 	theory in be ionized v can be ionized idary valencies both cannot ncy cannot be ionized	14.	 (D) Ions or molecule to a central metal A group of atoms ca when (A) It is a small molece (B) It has an unshare (C) It is a negatively 	s linked by coordinate bonds atom or ion in function as a ligand only cule id electron pair charged ion
7.	 Which of the following complex (A) Larger the ligand, ligand bond (B) Highly charged lig (C) Larger the permanent the more stable is 	the more stable is the metal- and forms strong bond ent dipole moment of ligand,	15.	(b) It is a negatively (b) It is a positively of Which of the followin nation number (A) $[Zn(CN)_4]^{2-}$ (C) $[Cu(CN)_4]^{2-}$	charged ion g complexes show six coordi- (B) $[Cr(H_2O)_6]^{3+}$ (D) $[Ni((NH_3)_4]^{2+}$
	(D) Greater the ionizati the stronger is the	on potential of central metal, bond	16.	How many ions are p of $[Co(H_2O)_6]Cl_2$ (A) 2	(B) 3
8.	What is the co-ordinat $[Co(en)_2Cl_2]^+$ (A) 4 (C) 6	(B) 5 (D) 3	17.	(C) 4IUPAC name of [Pt(N(A) Triamminechlor chloride	(D) 6 H ₃) ₃ (Br)(NO ₂)Cl]Cl is robromonitroplatinum (IV)
9.	Bidentate ligand is (A) CN ⁻ (B) Ethylene diammine (C) SCN ⁻ (D) EDTA	(en)		 (B) Triamminebrom chloride (C) Triamminebrom chloride (D) Triamminenitro chloride 	nonitrochloroplatinum (IV) nochloronitroplatinum (IV) nochlorobromoplatinum (IV)

etoosindia.com India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

AIIMS LEVEI

Exercise # 2 SINGLE OBJECTIVE

- 1. Which of the following is not correctly matched?
 - (A) $[Fe(en)_2]^{3+}$ sp³d² and paramagnetic
 - **(B)** $[FeCl_4]^{2-}$ sp³ and paramagnetic
 - (C) $[Fe(CN)_{\alpha}]^{3-}$ d^2sp^3 and paramagnetic
 - (D) $[Fe(CO)_2(NO^+)_2]$ sp³ and diamagnetic
- 2. Which of the following isomers of $[M(NH_2)_2Cl_2]$ would react with silver oxalate $(Ag_2C_2O_4)$ to give a coordination compound ?

- 3. The complex $K_4[Zn(CN)_4(O_2)_2]$ is oxidised into $K_{2}[Zn(CN)_{4}(O_{2})_{2}]$, then which of the following is correct?
 - (A) Zn (II) is oxidised into Zn (IV)
 - (B) Paramagnetic moment decreases
 - (C) O O bond length increases
 - (D) Paramagnetic moment increases
- 4. The hybridisation of $[Co F_{4}]^{3-}$ and $[Co (C_{2}O_{4})_{3}]^{3-}$ are :
 - (A) both sp^3d^2
 - (B) both d^2sp^3
 - (C) sp^3d^2 and d^2sp^3 respectively
 - (**D**) d^2sp^3 and sp^3d^2 respectively
- 5. Consider the following statements ;

S1: The $[Co(ox)_2]^{3-}$ complex is diamagnetic and gains stability through chelation.

S2 : The $[Co(NO_2)_{c}]^{4-}$ is inner orbital complex involving d²sp³ hybridisation and is paramagnetic. S3 : The complex $[PtCl_4]^{2-}$ is square planar and diamagnetic.

and arrange in the order of true / false

(A) T T T	(B) F F T
(C)TFT	(D) T T F

Select the correct statement ;

6.

8.

9.

- (A) Potassium ferrocyanide and potassium ferricyanide can be differentiated by measuring the solid state magnetic moment.
- (B) The complex $[Co(NH_3)_5Br]SO_4$ and $[Co(NH_3)_5]SO_4$ SO₄]Br can be differentiated by adding aqueous solution of barium chloride
- (C) The complex $[Co(NH_2), Cl]Br$ and [Co(NH₂)₅Br]Cl can be differentiated by adding aqueous solution of silver nitrate.
- (D) All of these

All the following complexes show decrease in their weights when placed in a magnetic balance then the group of complexes having tetrahedral geometry is :

Ι	Ni(CO) ₄
I	$K[AgF_4]$
Ш	$Na_2[Zn(CN)_4]$
IV	$K_{\lambda}[PtCl_{\lambda}]$
V	$[\tilde{RhCl}(PPh_3)_3]$
(A) II, III, V	(B) I, II, III
(C) I, III, IV	(D) none of these

- The complex $[Fe(H_2O)_5NO]^{2+}$ is formed in the brown ring test for nitrates when freshly prepared FeSO₄ solution is added to aqueous solution of NO₃⁻ ions followed by addition of conc. H₂SO₄. Select correct statement about this complex.
- (A) Hybridisation of iron is $sp^{3}d^{2}$.
- (B) Iron has +1 oxidation state.
- (C) It has magnetic moment of 3.87 B. M. confirming three unpaired electrons in Fe.
- (D) All the above are correct statements.

Which of the following has dsp² hybridisation and is diamagnetic in nature?

(I) Na ₄ $[Cr(CO)_4]$	(III) [Ni(DMGH),]
(III) [PtHBr(PEt ₂) ₂]	$(IV) [Ag(SCN)]^{3-}$
(V) $[AuBr_4]^-$	· · · · · -
(A) I, II, IV only	(B) I, III, IV, V only
(C) II, III, V only	(D) III, V only
Of the following as	mplay ions one avhibi

10. Of the following complex ions, one exhibits isomerism. That is :

$(\mathbf{A}) \left[Ag(NH_3)_2 \right]^+$	(B) $[Co(NH_3)_5NO_2]^{2+}$
(\mathbb{C}) [Pt(en)Cl ₂]	(D) $[Co(NH_3)_5Cl]^{2+}$

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

CHEMISTRY FOR NEET & AIIMS

E	Exercise # 3 PART - 1	MATRIX MATCH COLUMN
1.	Match the complexes given in column-I and the chara Column – I (Complexes) (A) [Ni (CO) ₄] (B) $[AgF_4]^-$ (C) $[Zn (CN)_4]^{2-}$ (D) $[RhCl(PPh_3)_3]$	acteristic(s) given in column-II. Column – II (characteristics) (p) sp ³ hybridisation (q) Diamagnetic (r) dsp ² (s) Unidentate ligand. (t) + 3 oxidation state of metal ion
2.	Match the complexes given in column-I and the magn Column I (Complexes) (A) $[NiCl_2(PPh_3)_2]$ (B) $V(CO)_6$ (C) $[Cr(CN)_6]^{4-}$ (D) $Ni(CO)_4$	netic properties given in column-II. Column II (Magnetic properties) (p) Paramagnetic with 1 unpaired electrons (q) Paramagnetic with 2 unpaired electrons (r) Paramagnetic with 3 unpaired electrons (s) Diamagnetic
3.	Match the complexes listed in column-I with type of P Column I (A) $[Au F_4]^-$ (B) $[Cu(CN)_4]^{3-}$ (C) $[Co(NH_3)_6]^{3+}$ (D) $[Fe(H_2O)_5 NO]^{2+}$	hybridisation listed in column-II. Column II (p) dsp ² hybridisation (q) sp ³ hybridisation (r) sp ³ d ² hybridisation (s) d ² sp ³ hybridisation
4.	 Match the pair of complexes given in column-I and the Column - I (A) (NH₄)₂[NiCl₄] and (NH₄)₂[Ni(CN)₄] (B) CoCl₃.6NH₃ and PtCl₄.5NH₃ (C) [Pt(NH₃)₂Cl₂] and (NH₄)₂[PtCl₄] (D) K₂[Fe(H₂O)₆] and K₄[FeCl₆] 	 he characteristic(s) given in column-II. Column-II (p) Both show same electrical conductance. (q) Both show same effective atomic number. (r) Both show same primary valencies. (s) Both gives white participate with AgNO₃ solution.
5.	Match the complexes given in column-I and the chara Column – I (Complexes) (A) [Ni (CO) ₄] (B) [Fe(NO) ₂ (CO) ₂] (C) [Ni(PF ₃) ₄] (D) [PtCl ₃ (C ₂ H ₄)] ⁻	acteristic(s) given in column-II. Column – II (characteristics) (p) Tetrahedral (q) π back bonding (r) diamagnetic (s) One of the ligand is three electron donor.
6.	Match the complexes given in column-I and the chara Column – I (Complexes) (A) $[Co(H_2O)_6]^{3+}$ (B) $[CoF_6]^{3-}$ (C) $[Co(NO_2)_6]^{3-}$ (D) $[Co(ox)_3]^{3-}$	acteristic(s) given in column-II. Column – II (characteristics) (p) d ² sp ³ (q) sp ³ d ² (r) diamagnetic (s) paramagnetic

etoosindia.com

240)

COORDINATION COMPOUND

	Exercise # 4	PART - 1	7/	PREVIOUS YEAR (N	NEET/AIPMT)
1.	Shape of Fe (CO) ₅ is (A) Octahedral (C) trigonl bipyramidal	[CBSE AIPMT 2000](B) square planar(D) square pyramidal	8.	Which of the following with of isomers? (A) $[Co(NH_3)_4 Cl_2]$	(B) [Ni (en) (NH ₃) ₄] ²⁺
2.	In the separation of Cu ²⁺ qualitative analysis of ca (II) sulphate and tetramin and tetrammine cadmiun KCN to from the corresp which one of the following	and Cd ²⁺ of IInd group in tions, tetrammine copper mine copper (II) sulphate m (II) sulphate react with onding cyano complexes, ng pairs of the complexes	9.	 (C) [N1 (C₂O₄) (en)₂]²⁻ Atomic number of Cr and 26, which of the following spin of electron? (A) [Cr(CO)₆] (C) [Fe(CN),]4- 	(D) $[Cr (SCN)_2 (NH_3)_4]^T$ Fe are respectively 24 and g is paramagnetic with the [CBSE AIPMT 2002] (B) $[Fe(CO)_5]$ (D) $[Cr(NH_2)_1]^{3+}$
	and their relative stability Cu^{2+} and Cd^{2+} ? (A) $K_3 [Cu (CN)_4]$: less the more stable	y enables the separation of [CBSE AIPMT 2001] stable and K_2 [Cd (CN) ₄]:	10.	The hypothetical complex cobalt (III) chloride can b	chloro diaquatriammine be represented as [CBSE AIPMT 2002]
	(B) $K_3 [Cu (CN)_4]$: more less stable (C) $K_2 [Cu (CN)_4]$: less more stable	stable and K_2 [Cd (CN) ₄]: stable and K_2 [Cd (CN) ₄]:		$\begin{array}{l} (A) \left[\text{CoCi}(\text{NH}_3)_3 \left(\text{H}_2\text{O}\right)_2 \right] \text{C} \\ (B) \left[\text{Co}(\text{NH}_3)_3 \left(\text{H}_2\text{O}\right)_2 \right] \text{Cl}_2 \\ (C) \left[\text{Co}(\text{NH}_2)_3 \left(\text{H}_2\text{O}\right)_2 \right] \text{Cl} \\ (D) \left[\text{Co}(\text{NH}_3)_3 \left(\text{H}_2\text{O}\right)_3 \right] \text{Cl}_3 \end{array}$	
	(D) $K_2[Cu(CN)_4]$: more less stable	stable and K_2 [Cd (CN) ₄]:	11.	Which one of the folloiw will not show geemetrical	ng octahedral complexes isomerism? (A and B are
3.	Which one of the follow four isomers (A) $[Co(en)_3]Cl_3$	ing complexes will have [CBSE AIPMT 2001]		(A) $[MA_4B_2]$ (C) $[MA_2B_4]$	(B) $[MA_3B]$ (D) $[MA_3B_3]$
	(B) $[Co(en)_2 Cl_2]Cl$ (C) $[Co(PPh_3)_2(NH_3)Cl_2]$ (D) $[Co(PPh_3)_3CI]Cl_2$	Cl	12.	According to IUPAC nitroprusside is named as (A) sodium pentacyanoni	nomenclature sodium [CBSE AIPMT 2003] trosyl ferrate (II)
4.	Which of the following w conductivity ? (A) K_4 [Fe (CN) ₆]	ill exhibit maximum ionic [CBSE AIPMT 2001] (B) [Co (NH ₃) ₆] Cl ₃		(B) sodium pentacyanoni(C) sodium nitoferricyani(D) sodium nitroferrocyan	trosyl ferrate (III) de nide
5.	(C) $[Cu(NH_3)_4]Cl_2$ Which statement is incor	(D) $[Ni(CO)_4]$	13.	The number of unpaired ion $[COF_6]^{3-}$ is (At.no.of	electrons in the complex Co=27)
	 (A) Ni (CO)₄ - tetrahedra (B) [Ni(CN,]² square plan 	[CBSE AIPMT 2001] l, paramagnetic nar, diamagnetic		(A) 3 (C) 2	[CBSE AIPMT2003] (B)2 (D)0
	(C) Ni (CO) ⁴ - tetrahedral, (D) $[Ni(Cl)_4]^2$ tetrahedral	diamagnetic I, paramagnetic	14.	Among the following whorganometallic compound $(A) K[PtC] (n^2 - CH)]$	tich is not the π - bonded 1 ? [CBSE AIPMT 2003] (B) Fe (n ⁵ -C ⁵ H)
6.	Coordination number of l	Ni in [Ni (C ₂ O ₄) ₃] ⁴ is [CBSE AIPMT 2000]	15	(C) Cr $(\eta^6 - C_6 H_6)_2$	$(D) (CH_3)_4 Sn$
	(A) 3 (C) 4	(B) 6 (D) 2	15.	would exhibit optical ison	nerism?
7.	Which of the following or is σ and π - bonded ? (A) [Fe (η^{5} -C ₅ H ₅) ₂] (C) [Co (CO) ₅ NH ₃] ²⁺	rganometallic compounds [CBSE AIPMT 2001] (B) K[PtCl ₃ (η^2 -C ₂ H ₄)] (D) Fe (CH ₃) ₃		 (B) Diamminedichloroplat (C) Trans-Dicyanobis (eth (III) chloride (D) Tris- (ethylenediamin 	inum (ii) nylenediamine) chromium e) cobalt (III) bromide

etoosindia.com

			MOCK	TEST			
1.	All the following comp P : $[FeF_6]^{3-}$; Q : $[CoF_6]^3$ The correct order of the (A) P>Q>R>S	STRA lex ions are foun $(F, R : [V(H_2O)_6]^3$ ir paramagnetic (B) $P < Q < C$	IGHT OBJ d to be param '; S : [Ti(H ₂ O moment (spin R < S	IECTIVE TYP agnetic ${}_{6}{}^{3^{+}}$ n only) is (C) P = Q = R = S	РЕ S	(D) P>R>Q>S	
2.	Which of the following (A) Ti(NO ₃) ₄ is a colou (C) $[Cr(NH_3)_6]^{3+} 3Cl^{-}$ is	statement(s) mo rless compound a colourless com	ost likely to be	e incorrect? (B) [Cu(NCCH ₃) (D) K_3 [VF ₆] is c] ₄] ⁺ BF ₄ ⁻ i olourless	s a colourless comp compound	bound
3.	Amongst the following $(A) [Pd(CN)_4]^{2-}$	the species with (B) [Ni(CN) ₄	n tetrahedral j] ^{2–}	geometry is : (C) [PdCl ₄] ²⁻		(D) [NiCl ₄] ²⁻	
4.	 Which of the following (A) Potassium ferrocya (B) Crystal field splittin (C) The geometry of Ni (D) (A) & (C) both 	statements is consistent of the statements	prrect? etic where as p e ion is greated $(PPh_3)_2$ are to	ootassium ferricya er than that of ferr etrahedral.	nide is pa icyanide i	ramagnetic. on.	
5.	Amongst $[Co(ox)_3]^3$ -, [C (A) $[Co(ox)_3]^3$ - and [Co (B) $[Co(ox)_3]^3$ - and [Co (C) $[Co(ox)_3]^3$ - and [Co (D) $[Co(NH_3)_6]^3$ + and [Co	$CoF_6]^{3-}$ and $[Co(NF_6]^{3-}$ are paramage $(NH_3)_6]^{3+}$ are para $(NH_3)_6]^{3+}$ are diate $(NH_3)_6]^{3+}$ are diate $CoF_6]^{3-}$ are parameter COF_6 and $COF_6]^{3-}$ are parameter COF_6 and COF_6 a	NH ₃) ₆] ³⁺ : gnetic and [Co amagnetic and nagnetic and agnetic and [0	$(NH_3)_6]^{3-}$ is diama d $[CoF_6]^{3-}$ is diama $[CoF_6]^{3-}$ is parama $[Co(ox)_3]^{3-}$ is diama	gnetic. Ignetic. Ignetic. Ignetic.		
6.	All the following comp complexes having tetra (i) Ni(CO) ₄ (v) [RhCl(PPh ₃) ₃] (A) (ii), (iii), (v)	blex show decreat hedral geometry (ii) K[AgF ₄] (B) (i), (ii), (ii)	ses in their w is : i)	veights when plac (iii) Na ₂ [Zn(CN) (C) (i), (iii), (iv)	ed in a ma	agnetic balance the (iv) $K_2[PtCl_4]$ (D) None of thes	en the group o e
7.	$[Fe(en)_2(H_2O)_2]^{2+} + en - (A) It is a low spin comp(C) It shows geometrical$	→ complex(X). T plex il isomerism	The correct sta	(B) It is diamagr (D) (A) and (B)	complex (netic both	X) is :	
8.	On treatment of [Ni(NH are obtained, I can be c [Ni(NH ₃) ₂ (C ₂ O ₄)] wher (A) I cis, II trans; both t (C) I trans, II cis; both t	$[_{3})_{4}]^{2+}$ with concer- converted into II e as II does not re- cetrahedral cetrahedral	trated HCl, tw by boiling wi eact. Point ou	wo compounds I an th dilute HCl. A s t the correct stater (B) I cis, II trans (D) I trans, II cis	nd II havin solution of nent from s; both squ s; both squ	g the same formula f I reacts with oxal the following. uare planar uare planar	, [Ni(NH ₃) ₂ Cl2 ix acid to forn
9.	The total number of iso (A) 10	mers shown by [((B) 6	Co(NH ₃) ₄ (NO	$(\mathbb{C})_2$ (NO ₃) comple	x is:	(D) 12	
10.	In which of the followin (A) $[FF_6]^{3-}$	ng complex ion, t (B) [Fe(CN) _e	the metal ion] ^{3–}	will never have t_2^6 (C) [Fe(CN) ₆] ⁴⁻	$e_{g}, e_{g}^{0} \operatorname{conf}$	iguration according (D) None of thes	g to CFT? e
11.	Which of the following lowest molecular mass ⁶ (A) $[Cr(NH_3)_4(NO_2)_2]^+$ (C) $[Cr(NH_3)_5(NO_2)]^{2+}[$	polymerisation is ? [Cr(NH ₃) ₂ (NO ₂) ₄ Cr(NH ₃)(NO ₂) ₅] ²	omers of the c - -	compound having o (B) [Cr(NH ₃) ₆] ³⁺ (D) All	empirical [Cr(NO ₂)	formula [Cr(NH ₃) ₃ , ₆] ^{3–}	$(NO_2)_3$] has the

etoosindia.com

11th Class Modules Chapter Details

PHYSICS

CHEMISTRY

Module-1

- 1. Physical World & Measurements
- 2. Basic Maths & Vector
- 3. Kinematics

Module-2

- 1. Law of Motion & Friction
- 2. Work, Energy & Power

Module-3

- **1.** Motion of system of
- particles & Rigid Body
- 2. Gravitation

Module-4

- 1. Mechanical Properties of Matter
- 2. Thermal Properties of Matter

Module-5

- 1. Oscillations
- 2. Waves

Module-1(PC)

- 1. Some Basic Conceps of Chemistry
- 2. Atomic Structure
- 3. Chemical Equilibrium
- **4.** Ionic Equilibrium

Module-2(PC)

- 1. Thermodynamics & Thermochemistry
- 2. Redox Reaction
- **3.** States Of Matter (Gaseous & Liquid)

Module-3(IC)

- 1. Periodic Table
- 2. Chemical Bonding
- 3. Hydrogen & Its Compounds
- 4. S-Block

Module-4(OC)

- 1. Nomenclature of
- Organic Compounds
- 2. Isomerism
- 3. General Organic Chemistry

Module-5(OC)

- 1. Reaction Mechanism
- 2. Hydrocarbon
- **3.** Aromatic Hydrocarbon
- 4. Environmental Chemistry & Analysis Of Organic Compounds

BIOLOGY

Module-1

- 1. Diversity in the Living World
- 2. Plant Kingdom
- 3. Animal Kingdom

Module-2

- 1. Morphology in Flowering Plants
- **2.** Anatomy of Flowering Plants
- **3.** Structural Organization in Animals

Module-3

- 1. Cell: The Unit of Life
- 2. Biomolecules
- 3. Cell Cycle & Cell Division
- 4. Transport in Plants
- 5. Mineral Nutrition

Module-4

- 1. Photosynthesis in Higher Plants
- 2. Respiration in Plants
- 3. Plant Growth and Development
- 4. Digestion & Absorption
- 5. Breathing & Exchange of Gases

Module-5

- Body Fluids & Its Circulation
 Excretory Products & Their Elimination
- **3.** Locomotion & Its Movement
- 4. Neural Control & Coordination
- **5.** Chemical Coordination and Integration

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

12th Class Modules Chapter Details

PHYSICS

Module-1

- 1. Electrostatics
- 2. Capacitance

Module-2

- 1. Current Electricity
- 2. Magnetic Effect of Current and Magnetism

Module-3

- 1. Electromagnetic Induction
- 2. Alternating Current

Module-4

- 1. Geometrical Optics
- 2. Wave Optics

Module-5

- 1. Modern Physics
- 2. Nuclear Physics
- 3. Solids & Semiconductor Devices
- 4. Electromagnetic Waves

CHEMISTRY

Module-1(PC)

- 1. Solid State
- 2. Chemical Kinetics
- **3.** Solutions and Colligative Properties

Module-2(PC)

- 1. Electrochemistry
- 2. Surface Chemistry

Module-3(IC)

- 1. P-Block Elements
- 2. Transition Elements (d & f block)
- 3. Co-ordination Compound
- 4. Metallurgy

Module-4(OC)

- 1. HaloAlkanes & HaloArenes
- Alcohol, Phenol & Ether
 Aldehyde, Ketone &
- Carboxylic Acid

Module-5(OC)

- 1. Nitrogen & Its Derivatives
- 2. Biomolecules & Polymers
- 3. Chemistry in Everyday Life

BIOLOGY

Module-1

- 1. Reproduction in Organisms
- 2. Sexual Reproduction in
- Flowering Plants
- 3. Human Reproduction
- 4. Reproductive Health

Module-2

- **1.** Principles of Inheritance and Variation
- 2. Molecular Basis of Inheritance
- **3.** Evolution

Module-3

- 1. Human Health and Disease
- 2. Strategies for Enhancement in
- Food Production
- 3. Microbes in Human Welfare

Module-4

- **1.** Biotechnology: Principles and Processes
- 2. Biotechnology and Its
- Applications
- 3. Organisms and Populations

Module-5

- 1. Ecosystem
- 2. Biodiversity and Conservation
- 3. Environmental Issues

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do