
This PDF is the Sample PDF taken from our Comprehensive Study Material for NEET & AIIMS

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

ETOOS Comprehensive Study Material For NEET & AIIMS

CHAPTER

THERMODYNAMICS AND THERMICHEMISTRY

The production of motion in the steam engine always occurs in circumstances in which it is necessary to recognize, namely when the equilibrium of caloric is restored or when caloric passes from the body at one temperature to another body at a lower temperature.

"SADI CARNOT"

INTRODUCTION

hermodynamics is the branch of chemistry that deals with energy changes occuring during various physical & chemical processes. It also deals with the transformation between different forms of energy. Chemical energy stored by molecules can be released as heat during chemical reaction when a fuel like methane, cooking gas or coal burns in air . The chemical energy may also be used to mechanical work when a fuel burns in an engine or to provide electrical energy through a galvenic cell like dry cell. Thus, various forms of energy are interrelated and under certain conditions, thease may be transformed from one form into another. The study of thease energy transformation forms the subject matter of thermodynamics. The laws of thermodynamic deals with energy changes of macroscopic systems involving a large number of molecules rather than microscopic systems containing a few molecules.

In thermochemistry, chemical processes are associated with energy changes in chemical reactions.

Also $P = \frac{F}{A}$ F = PA dW = PA.dx $\Rightarrow \quad \because dV = -A.dx$ (-ive sign indicates work is done by the system i.e. gas is expanding against P_{ext}) $\Rightarrow \qquad dW = -P_{ext.} dV$ $\Rightarrow \qquad W = -\int P_{extemal} dV$

Sign Convention

Work done by the system is -ive.

Work done on the system is +ive

ETOOS KEY POINTS

- (1) During expansion dV is +ive and hence sign of w is -ive i.e. work is done by the system and hence Expansion Work is always negative.
- (2) During compression, dV is -ive which gives +ive value of w i.e. work is done on the system and hence Compression work is always positive.
- (II) Non-PV Work Following are some examples of Non-PV work.

Stretching	Tension (γ) , length (l)	$w = -\int \gamma dl$	N m = J
Surface expansion	Surface tension (γ mm), area (σ)	$w=-{\textstyle\int}{\int}\gamma d\sigma$	$(N m^{-1}) (m^2) = J$
Electrical	Electrical potential (ϕ) ,	$\mathbf{w} = \mathbf{q} \times \mathbf{V}$	$V \times C = J$

Units of heat & work :

Calorie : It is defined as the quantity of heat required to raise the temperature of 1g of water by 1° C (14.5 to 15.5°C) 1 cal=4.184 J=4.2 J

1 L-atm = $101.3 \text{ J} = 24.206 \text{ cal} = 101.3 \times 10^7 \text{ erg}$ 1 L-atm > 1 cal. > 1 J. > 1 erg

Ex. Find the work done, when one mole of ideal gas in 10 litre container at 1 atm. is allowed to enter a vaccuated bulb of capacity 100 litre.

Sol. (a) $W = -P\Delta V$ But since gas enters the vaccum bulb and pressure in vaccum is zero.

W = 0

Ex. If 1 mole of gas expands from 1 litre to 5 litre against constant atmospheric pressure than calculate thw work done.

Sol. (b) $W = -P\Delta V = -1(5-1) = -4$ litre-atm.

- Ex. Calculate the work done when 1 mol of zinc dissolves in hydrochloric acid at 273 K in :
 - (a) an open beaker
 - (b) a closed beaker at 300 K.
- Sol. (a) From one mole of zinc, the no. of moles of H_2 gas evolved = 1 Hence volume of hydrogen gas evolved = 22.4 litre (when P = 1 atm and T = 273 K)
 - \therefore w=-P Δ V=-1 × 22.4 litre atm

$$=-22.4 \times \frac{8.314}{0.082}$$
 J $=-2271.14$ J

(b) For a closed system $P_{ext} = 0$., therefore, w = 0.

etoosindia.com

THERMODYNAMICS

1. First law of Thermodynamics

For a finite change : $q = \Delta E - w = \Delta E - P\Delta V$

where q is heat given to system, ΔE is change in internal energy and –w is work done by the system. dq = dE – dw = dE – PdV

2. Work Done in an Irreversible Process

 $\mathbf{w} = -\mathbf{P}_{\text{ext}} \times \Delta \mathbf{V} = -\mathbf{P}_{\text{ext}} \times (\mathbf{V}_2 - \mathbf{V}_1) = -\mathbf{P}_{\text{ext}} \times \mathbf{R} \left[\frac{\mathbf{P}_1 \mathbf{T}_2 - \mathbf{P}_2 \mathbf{T}_1}{\mathbf{P}_1 \mathbf{P}_2} \right]$

 P_{ext} is the pressure against which volume changes from V_1 to V_2

3. Work Done in Reversible Process, i.e., Maximum Work Isothermal Conditions

$$w_{rev} = -2.303 \text{ nRT} \log_{10} (V_2/V_1)$$

 $W_{rev} = -2.303 \text{ nRT} \log_{10} (P_1/P_2)$

w_{rev} is maximum work done.

Adiabatic Conditions

$$W_{rev} = [nR/(\gamma - 1)] [T_2 - T_1]$$

 γ is poisson's ratio.

Also for adiabatic process, following conditions hold good :

 $PV^{\gamma} = constant$

 $T^{\gamma}P^{1-\gamma} = constant$

 $V^{\gamma^{-1}} = constant$

4. Heat Capacities

At constant pressure $C_p = (\delta H / \delta H)_p$

 C_p is molar heat capacity at constant pressure.

At constant volume $C_v = (\delta E/\delta T)_v$

C_v is molar heat capacity at constant volume.

 $C_n \times c_n \times M$ and $C_v = c_v \times M$

and $C_p - C_v = R/M$ $C_p/C_v = c_p/c_v = \gamma$

(The poisson's ratio)

 $c_{_{\rm p}}$ and $c_{_{\rm v}}$ are specific heats at constant pressure and volume respectively.

etoosindia.com

42

SOLVED EXAMPLE

- Ex. 1 During 200J work done on the system, 140 J of heat Ex. 5 is given out. Calculate the change in internal energy.
- Sol. w = 200 J; q = -140 J; $\therefore q = \Delta E + (-w); \text{ where } -w \text{ is work done by the system}$ $\Delta E = q + w$ $\Delta E = -140 + 200 = +60 \text{ J}$
- **Ex.2** A gas absorbs 200 J of heat and expands against the external pressure of 1.5 atm from a volume of 0.5 litre. Calculate the change in internal energy.
- Sol. $w = -P\Delta V = -1.5 \times (1.0 0.5) = -0.75$ litre atm = -0.75×101.3 J = -75.975 J \therefore 1 litre atm = 101.3 J Now, $\Delta E = 200 - 75.975 = +124.025$ J
- **Ex.3** Two litre of N_2 at 0°C and 5 atm pressure are expanded isothermally against a constant external pressure of 1 atm until the pressure of gas reaches 1 atm. Assuming gas to be ideal, calculate work of expansion.
- Sol. Since the external pressure is greatly different from the pressure of N₂ and thus, process is irreversible. $w = -P_{ext} (V_2 - V_1)$ $w = -1 \times (V_2 - V_2)$

Given
$$V_1 = 2$$
 litre $V_2 = ?$ $T = 273 \text{ K}$
 $P_1 = 5 \text{ atm}$ $P_2 = 1 \text{ atm}$
 \therefore $P_1V_1 = P_2V_2$
 \therefore $V_2 = \frac{2 \times 5}{1} = 10$ litre
 \therefore $w = -1 \times (10 - 2) = -8$ litre atm

$$= -\frac{8 \times 1.987}{0.0821}$$
 calorie

$$= -\frac{8 \times 1.987 \times 4.184}{0.0821}$$
 J=-810.10 joule

Ex.4 The enthalpy of vaporisation of liquid diethyl ether $-(C_2H_5)_2O$, is 26.0 kJ mol⁻¹ at its boiling point (35.0°C). Calculate ΔS for conversion of: (A) liquid to vapour, and (B) vapour to liquid at 35°C.

Sol. (A)
$$\Delta S_{vap.} =$$

 $\frac{\Delta H_{vap.}}{T} = \frac{26 \times 10^3}{308} = +84.41 \text{ JK}^{-1} \text{ mol}^{-1}$

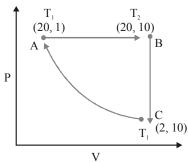
=

(B)
$$\Delta S_{\text{cond.}} = \frac{\Delta H_{\text{cond.}}}{T} = -\frac{26 \times 10^{\circ}}{308} (* H_{\text{cond}} = -26 \text{ kJ})$$

= -84.41 JK⁻¹ mol⁻¹

Calculate the free energy change when 1 mole of NaCl is dissolved in water at 25°C. Lattice energy of NaCl = 777.8 kJ mol⁻¹; Δ S for dissolution = 0.043 kJ mol⁻¹ and hydration energy of NaCl = -774.1 kJ mol⁻¹.

$$\Delta H_{dissolution} = Lattice energy + Hydration energy$$
$$= 777.8 - 774.1 = 3.7 \text{ kJ mol}^{-1}$$
Now
$$\Delta G = \Delta H - T\Delta S$$
$$= 3.7 - 298 \times 0.043 = 3.7 - 12.814$$
$$\Delta G = -9.114 \text{ kJ mol}^{-1}$$


Ex.6 The equilibrium constant for the reaction given below is 2.0×10^{-7} at 300 K. Calculate the standard free energy change for the reaction;

 $PCl_{5}(g) \longrightarrow PCl_{3}(g) + Cl_{2}(g)$ Also, calculate the standard entropy change if $\Delta H^{\circ} = 28.40 \text{ kJ mol}^{-1}$.

Sol.
$$\Delta G^{\circ} = -2.303 \times 8.314 \times 300 \log [2.0 \times 10^{-7}]$$

= +38479.8 J mol⁻¹ = +38.48 kJ mol⁻¹
Also, $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

$$\therefore \quad \Delta S^{\circ} = \frac{\Delta H^{\circ} - \Delta G^{\circ}}{T} = \frac{28.40 - 38.48}{300}$$
$$= -0.0336 \text{ kJ} = -33.6 \text{ JK}^{-1}$$

Ex. 7 One mole of a perfect monoatomic gas is put through a cycle consisting of the following three reversible steps :

(CA) Isothermal compression from 2 atm and 10 litres to 20 atm and 1 litre.

(AB) Isobaric expansion to return the gas to the original volume of 10 litres with T going from T_1 to T_2 .

(BC) Cooling at constant volume to bring the gas to the original pressure and temperature.

The steps are shown schematically in the figure shown.

(A) Calculate T_1 and T_2 .

(B) Calculate ΔE , q and w in calories, for each step and for the cycle.

- etoosindia.com Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION 1

PHYSICS FOR NEET & AIIMS

	Exercise # 1	SINGLE OBJ	JECTI	VE NEET I	LEVEL
1.	Internal energy of an id (A) Volume (C) Pressure	eal gas depends on(B) Temperature(D) None of these	9.	At constant T and P, which statements is correct $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$	for the reaction
2.		s so carried out that at the to its initial state is called (B) Reversible process (D) Cyclic process		(A) ΔH is independent of the reactants of that compound (B) $\Delta H > \Delta E$ (C) $\Delta H < \Delta E$	
3.	One calorie is equal to (A) 0.4184 Joule (C) 41.84 Joule	(B) 4.184 Joule (D) 418.4 Joule	10.	(D) $\Delta H = \Delta E$ For the reaction of one mole mole of sulphuric acid in a and w correspond to	
4.	The total internal energisothermal cycles is (A) Always 100 calories	gy change for a reversible		(A) $\Delta U < 0, w = 0$ (B) $\Delta U = 0, w < 0$ D) $\Delta U < 0, w > 0$
	(B) Always negative (C) 0		11.	Which is not the correct relation (ΔH) and intrinsic energy (ΔH)	E)
	(D) Always positive				B) $\Delta H = \Delta E + n RT$ D) $\Delta E = \Delta H - P \Delta V$
5.	 The first law of thermod (A) The law of conserva (B) The law of conserva (C) The law of conserva (D) Both (A) and (B) 	ation of energy ation of mass	12.	 (C) ATT = AL TAV The law of Lavoisier and Lag (A) The principle of conserv (B) Equivalence of mechanic (C) The principle of conserv (D) Equivalence of mechanic 	place illustrates vation of energy cal and thermal energ ation of matter
6.	mole of oxygen, in a convert the carbon mon	of carbon monoxide and one closed vessel is ignited to oxide to carbon dioxide. If ge and ΔE is the change in	13.		$\Rightarrow 2 \text{NH}_3; \Delta \text{H} =$ B) $\Delta \text{E} - 2 \text{RT}$ D) $\Delta \text{E} + 2 \text{RT}$
	internal energy, then (A) $\Delta H > \Delta E$ (B) $\Delta H < \Delta E$ (C) $\Delta H = \Delta E$ (D) The relationship dep vessel	pends on the capacity of the	14.	 If ΔH is the change in enthal in internal energy accompany. (A) ΔH is always greater that (B) ΔH < ΔE only if the nuproducts is greater that reactants (C) ΔH is always less than Δ 	ying a gaseous reaction ΔE umber of moles of than the number of th
7.	exothermic reaction?	ng is always negative for		(D) $\Delta H < \Delta E$ only if the nuproducts is less than the the reactants	
	(A) ΔH (C) ΔG	(B) ΔS(D) None of these	15.	"The resultant heat change in whether it takes place in o	
8.	The relation between ΔI			This statement is called (A) Lavoisier and Laplace la	W
	(A) $\Delta H = \Delta E - P \Delta V$ (C) $\Delta E = \Delta V + \Delta H$	(B) $\Delta H = \Delta E + P \Delta V$ (D) $\Delta E = \Delta H + P \Delta V$		(B) Hess's law(C) Joule's law(D) Le-chatelier's principle	
52		etoosin	dia.co	om	

India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

Exercise # 2

SINGLE OBJECTIVE

8.

11.

12.

13.

- A system containing real gas changes it's state form state-1 to state-2.
 State-1 (2 atm, 3L, 300 K)
 State-2 (5 atm, 4L, 500 K)
 If change in internal energy = 30 L atm then calculate change in enthalpy.
 (A) 44 L atm
 (B) 35 L atm
 (C) 40 L atm
 (D) None of these
- Mixing of non-reacting gases is generally 9. accompanied by

 (A) Decrease in entropy
 (B) Increase in entropy
 (C) Official and the set of the set of
 - (C) Change in enthalpy
 - (D) Change in free energy
- 3. Which of the following reactions is associated with the most negative change in entropy ?
 - (A) $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$ (B) $C_2H_4(g) + H_2(g) \longrightarrow C_2H_6(g)$ (C) C (s, graphite) $+ O_2 \longrightarrow CO_2(g)$ (D) $3C_2H_2(g) \longrightarrow C_cH_c(\ell)$
- 4. Predict which of the following reaction (s) has a positive entropy change ?
 - I. $Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$
 - II. $\operatorname{NH}_4\operatorname{Cl}(s) \longrightarrow \operatorname{NH}_3(g) + \operatorname{HCl}(g)$
 - III. $2NH_3(g) \longrightarrow N_2(g) + 3H_2(g)$
 - (A) I and II (B) III (C) II and III (D) II
- 5. Which one of the following has ΔS^0 greater than zero
 - (A) $\operatorname{CaO}(s) + \operatorname{CO}_2(g) \rightleftharpoons \operatorname{CaCO}_3(s)$ (B) $\operatorname{NaCl}(aq) \rightleftharpoons \operatorname{NaCl}(s)$ (C) $\operatorname{NaNO}_3(s) \rightleftharpoons \operatorname{Na^+}(aq) + \operatorname{NO}_3^-(aq)$ (D) $\operatorname{N}_2(g) + 3\operatorname{H}_2(g) \rightleftharpoons 2\operatorname{NH}_3(g)$
- 6. For the gas phase decomposition, $PCl_5(g) \triangleq PCl_3(g) + Cl_2(g)$: (A) $\Delta H < 0$, $\Delta S < 0$ (B) $\Delta H > 0$, $\Delta S > 0$ (C) $\Delta H > 0$, $\Delta S < 0$ (D) $\Delta H < 0$, $\Delta S > 0$
- 7. When 2 moles of an ideal gas $\left(C_{p,m}\frac{5}{2}R\right)$ heated from 300 K to 600 K at constant volume, the change in entropy of gas ΔS_{gas} is :

(A) $5R \ln 2$ (B) $\frac{3}{2}R \ln 2$ (C) $3R \ln 2$ (D) $-3R \ln 2$ When one mole of an ideal gas is comressed to half of its initial volume and simultaneously heated to twice its initial temperature, the change in entropy of gas (ΔS) is :

AIIMS LEVEI

(A) $C_{p,m} \ln 2$ (B) $C_{v,m} \ln 2$ (C) $R \ln 2$ (D) $(C_{v,m} - R) \ln 2$

When two mole of an ideal gas $\left(C_{p,m} = \frac{5}{2}R\right)$

heated from 300 K to 600 K at constant pressure. The change in entropy of gas (Δ S) is :

(A)
$$\frac{3}{2} R \ln 2$$
 (B) $-\frac{3}{2} R \ln 2$

(C) 5R ln 2 (D)
$$\frac{5}{2}$$
 R ln 2

10. If one mole of an ideal gas $\left(C_{p,m} = \frac{5}{2}R\right)$ is

expanded isothermally at 300 K until it's volume is tripled, then change in entropy of gas is : (A) zero (B) infinity

(C) $\frac{5}{2} R \ln 3$ (D) $R \ln 3$

The entropy change when two moles of ideal monoatomic gas is heated from 200 to 300°C reversibly and isochorically?

(A)
$$\frac{3}{2} \operatorname{R} \ln \left(\frac{300}{200} \right)$$
 (B) $\frac{5}{2} \operatorname{R} \ln \left(\frac{573}{273} \right)$
(C) $3 \operatorname{R} \ln \left(\frac{573}{473} \right)$ (D) $\frac{3}{2} \operatorname{R} \ln \left(\frac{573}{473} \right)$

1 mole of an ideal gas at 25° C is subjected to expand reversibly and adiabatically to ten times of its initial volume. Calculate the change in entropy during expansion (in J k⁻¹ mol⁻¹)

What is the change in entropy when 2.5 mole of
water is heated from 27°C to 87°C ? Assume that the
heat capacity is constant. $(C_{p,m} (H_2O) = 4.2 \text{ J/g-K ln}$ (1.2)=0.18)(A) 16.6 J/K(B) 9 J/K(C) 34.02 J/K(D) 1.89 J/K

etoosindia.com

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

PHYSICS FOR NEET & AIIMS

I	Exercise # 3 PART - 1	MATRIX MATCH COLUMN
1.	Columm-I	Columm-II
	(A) Reversible isothermal expansion of an ideal gas	$(\mathbf{p}) \mathbf{w} = -2.303 \mathrm{nRT} \log \left(\frac{\mathrm{V}_2}{\mathrm{V}_1} \right)$
	(B) Reversible adiabatic compression of an ideal gas	(q) $PV^{\gamma} = constant$
	(C) Irreversible adiabatic expansion of an ideal gas	(r) w = $\frac{nR}{(\gamma - 1)}(T_2 - T_1)$
	(D) Irreversible isothermal compression of an ideal gas	(s) $\Delta H = 0$
2.	Column I	Column II
	(A) A process carried out infinitesimally slowly	(p) Adiabatic
	(B) A process in which no heat enters or leaves the system	$(q)\Delta G=0$
	(C) A process carried out at constant temperature	(r) Sublimation
	(D) A process in equilibrium	(s) $\Delta E = 0$, $\Delta H = 0$
	$(\mathbb{E}) \mathbf{A}(\mathbf{s}) \longrightarrow \mathbf{A}(\mathbf{g})$	(t) Reversible
	(F) Cyclic process	(u) Isothermal
3.	Columm - I	Columm - II
	(A) $(\Delta G_{system})_{T,P} = 0$	(p) Process is in equilibrium
	(B) $\Delta S_{\text{system}} + \Delta S_{\text{surrounding}} > 0$	(q) Process is nonspontaneous
	(C) $\Delta S_{\text{system}} + \Delta S_{\text{surrounding}} < 0$	(r) Process is spontaneous
	(D) $(\Delta G_{system})_{T,P} > 0$	(s) System is unable to do useful work
4.	Columm - I	Columm - II
	(A) Reversible adiabatic compression	(p) $\Delta S_{system} > 0$
	(B) Reversible vaporisation of liquid	(q) $\Delta S_{\text{system}} < 0$
	$(\mathbb{C}) 2\mathrm{N}(\mathrm{g}) \longrightarrow \mathrm{N}_2(\mathrm{g})$	$(r) \Delta S_{surrounding} \leq 0$
	(D) MgCO ₃ (s) $\xrightarrow{\Delta}$ MgO(s) + CO ₂ (g)	(s) $\Delta S_{surrounding} = 0$
5.	Columm - I	Columm - II
	(A) C (s, graphite) + $O_2(g) \longrightarrow CO_2(g)$	$(p) \Delta H^o_{\ combustion}$
	(B) $C(s, graphite) \longrightarrow C(g)$	$(q) \Delta H^{o}_{\ \ formation}$
	$(C) \operatorname{CO}(g) + \frac{1}{2} \operatorname{O}_2(g) \longrightarrow \operatorname{CO}_2(g)$	(r) $\Delta H^o_{atomization}$
	(D) $CH_4(g) \longrightarrow C(g) + 4H(g)$	(§) $\Delta H^{o}_{sublimation}$

etoosindia.com

62

	Exercise # 4 PART - 1	7[PREVIOUS YEAR (NEET/AIPMT)
1.	If Δ E is the heat of reaction for $C_2H_5OH(1) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(1)$ at constnat volume, the Δ H (heat of reaction at constant pressure), then the correct relation is [CBSE AIPMT 2000] (A) Δ H = Δ E + RT (B) Δ H = Δ E - RT	7.	Enthalpy of the reaction $CH_4 + \frac{1}{2}O_2 \rightarrow CH_3OH$, is negative. If enthalpy of combustion of CH_4 and CH_3OH are x and y respectively, then which relation is correct? [CBSE AIPMT 2001] (A) x > y (B) x < y
2.	(C) $\Delta H = \Delta E - 2RT$ (D) $\Delta H = \Delta E + 2 RT$ The entropy change in the fusion of one mole of solid melting at 27°C (latent heat of fusion is 2930 J mol ⁻¹) is [CBSE AIPMT 2000]	8.	(C) $x = y$ (D) $x \ge y$ Unit of entropy is [CBSE AIPMT 2002] (A) $JK^{-1} mol^{-1}$ (B) $J mol^{-1}$ (C) $J^{-1}K^{-1} mol^{-1}$ (D) $JK mol^{-1}$
3.	(A) 9.77 JK ⁻¹ mol ⁻¹ (B) 10.73 JK ⁻¹ mol ⁻¹ (C) 2930 JK ⁻¹ mol ⁻¹ (D) 108.5 JK ⁻¹ mol ⁻¹ The factor of ΔG values is important in metallurgy. The ΔG values for the following reactions at 800°C are given as [CBSE AIPMT 2000] S ₂ (s) + 2O ₂ (g) \rightarrow 2SO ₂ (g), ΔG = - 544 kJ	9.	In a closed insulated container a liquid is stirred with a paddle to increase the temperature, which of the following is true? [CBSE AIPMT 2002] (A) $\Delta E = W \neq 0$, $q = 0$ (B) $\Delta E = W = 0$, $q \neq 0$ (C) $\Delta E = 0$, $W = q$, $q \neq 0$ (D) $W = 0$, $\Delta E = q$, $q \neq 0$
	$2Zn(s) + S_{2}(s) \rightarrow 2ZnS(s), \Delta G = -293 \text{ kJ}$ $2Zn(s) + O_{2}(g) \rightarrow 2ZnO(s), \Delta G = -480 \text{ kJ}$ the ΔG for the reaction, $2ZnS(s) + 3O_{2}(g) \rightarrow 2ZnO(s) + 2SO_{2}(g) \text{ will be}$ (A) -357 kJ (B) -731 kJ (C) -772 kJ (D) -220 kJ	10.	2 moles of an ideal gas at 27°C temperature is expanded reversibly from 2 L to 20 L. Find entropy change ($R = 2$ cal/mol K). [CBSE AIPMT 2002] (A) 92.1 (B) 0 (C) 4 (D) 9.2
4.	(C) -773 kJ (D) -229 kJ PbO ₂ \rightarrow PbO, $\Delta G_{298} < 0$ SnO ₂ \rightarrow SnO, $\Delta G_{298} > 0$ Most probable oxidation state of Pb and Sn will be [CBSE AIPMT 2001]	11.	Heat of combustion ΔH° for C(s), H2(g) and CH4(g)are -94, -68 and -213 kcal/mol. Then, ΔH° for C(s) + $2H_2(g) \rightarrow CH_4(g)$ is(A) -17 kcal/mol(B) -111 kcal/mol(C) -170 kcal/mol(D) -85 kcal/mol
	(A) Pb^{4+} , Sn^{4+} (B) Pb^{4+} , Sn^{2+} (C) Pb^{2+} , Sn^{2+} (D) Pb^{2+} , Sn^{4+}	12.	The denisties of graphite and diamond at 298 K are 2.25 and 3.31 g cm ⁻³ , respectively. If the standard free energy difference (ΔG°) is equal to 1895 J mol ⁻¹ ,
5.	Change in enthalpy for reaction, $2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$ if heat of formation of $H_2O_2(l)$ and $H_2O(l)$ are -188 and -286 kJ/mol respectively is		the pressure at which graphite will be transformedinto diamond at 298 K is[CBSE AIPMT 2003](A) 9.92×10^6 pa(B) 9.92×10^5 pa(C) 9.92×10^8 pa(D) 9.92×10^7 Pa
	[CBSE AIPMT 2001] (A) - 196 kJ/mol (B) + 196 kJ/mol (C) + 948 kJ/mol (D) - 948 kJ/mol	13.	What is the entropy change (in J K^{-1} mol ⁻¹) when one mole of ice is converted into water at 0°C? (The enthalpy change for the conversion of ice to liquid water is 6.0 kJ mol ⁻¹ at 0°C) [CBSE AIPMT 2003]
6.	When 1 mole gas is heated at constant voluem, temperature is raised from 298 to 308 K. Heat supplied to the gas is 500 J. Then, which statement is correct? [CBSE AIPMT 2001]	14.	(A) $2.198 \text{ JK}^{-1} \text{ mol}^{-1}$ (B) $21.98 \text{ JK}^{-1} \text{ mol}^{-1}$ (C) $20.13 \text{ JK}^{-1} \text{ mol}^{-1}$ (D) $2.013 \text{ JK}^{-1} \text{ mol}^{-1}$ For which one of the following equestions ΔH_r° equal to ΔH_r° for the product? [CBSE AIPMT 2003]
	(A) $q = W = 500J, \Delta E = 0$ (B) $q = \Delta E = 500 J, W = 0$ (C) $q = -W = 500 J, \Delta E = 0$ (D) $\Delta E = 0, q = w = -500 J$		(A) $Xe(g) + 2F_2(g) \rightarrow XeF_4(g)$ (B) $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ (C) $N_2(g) + O_3(g) \rightarrow N_2O_3(g)$
2			

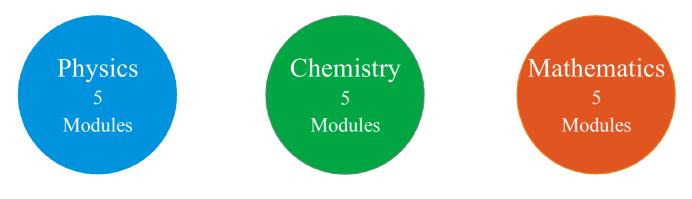
etoosindia.com

64)

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

PHYSICS FOR NEET & AIIMS

	МОСК	TEST	\mathbb{K}
	In an isobaric process, the ratio of heat supplied to the system (dQ) and work done by the system (dW) for diate gas is		
	(A) 1 : 1 (B) 7 : 2	(C) 7:5	(D) 5:7
	The enthalpy change for the reaction of 50.00 ml of ethy. The value of ΔE will be	-	1.5 atm pressure is $\Delta H = -0.31 \text{ kJ}$
	(A) -0.3024 kJ (B) 0.3024 kJ	(C) 2.567 kJ	(D) -0.0076 kJ
	Enthalpy of solution of NaOH (solid) in water is -41.6 of water		
	(A) Increase (B) Decreases	(C) Does not change	(D) Fluctuates indefinitely
4.	In which of the following entropy decreases ?(A) Crystallization of sucrose from solution(C) Melting of ice(D) Vaporization of camphor		
5.	For conversion C (graphite) \rightarrow C (diamond) the Δ S is (A) Zero (B) Positive	(C) Negative	(D) Unknown
Ĵ.	For a reaction $\Delta H = 9.08 \text{kJ mol}^{-1}$ and $\Delta S = 35.7 \text{JK}^{-1} \text{mol}^{-1}$ Which of the following statements is correct for the reaction(A) Reversible and Isothermal(B) Reversible and Exothermic(C) Spontaneous and Endothermic(D) Spontaneous and Exothermic		
7.	For a reaction to occur spontaneously		
	(A) $(\Delta H - T\Delta S)$ must be negative	(B) $(\Delta H + T\Delta S)$ must be negative	
	(C) ΔH must be negative	(D) ΔS must be negative	
3.	The total amount of energy in the universe is fixed, bu (A) Disorder is increasing (C) Matter is increasing	tt (B) Lightning is increasin (D) Gravitation is decreas	-
9.	If for a given substance melting point is T_B and freezin entropy change and temperature is	g point is T_A , then correct	variation shown by graph between
	(A) T_{B} (A) T_{A} (B) T_{A} (B) T_{A} (C)	$(C) \xrightarrow{\Delta S} T_{A} \xrightarrow{T_{B}} T_{T} $	$(\mathbf{D}) \xrightarrow{\Delta S} \xrightarrow{T_{A}} \xrightarrow{T_{B}} \xrightarrow{T_{A}}$
10.	Which of the following would be expected to have the	e largest antropy per mole	
	(A) $SO_2Cl_2(s)$ (B) $SO_2Cl_2(g)$	(C) $SO_2Cl_2(l)$	(\mathbf{D}) SO ₂ (\mathbf{g})
1.11		150/11 1 110/11	


11. The enthalpies of formation of Al_2O_3 and Cr_2O_3 are -1596 kJ and -1134 kJ respectively. ΔH for the reaction $2Al + Cr_2O_3 \rightarrow 2Cr + Al_2O_3$ is

```
(A) -2730 \text{ kJ} (B) -462 \text{ kJ} (C) -1365 \text{ kJ} (D) +2730 \text{ kJ}
```

etoosindia.com

India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

11th Class Modules Chapter Details

PHYSICS

CHEMISTRY

Module-1

- 1. Physical World & Measurements
- 2. Basic Maths & Vector
- 3. Kinematics

Module-2

- 1. Law of Motion & Friction
- 2. Work, Energy & Power

Module-3

- **1.** Motion of system of
- particles & Rigid Body
- 2. Gravitation

Module-4

- 1. Mechanical Properties of Matter
- 2. Thermal Properties of Matter

Module-5

- 1. Oscillations
- 2. Waves

Module-1(PC)

- 1. Some Basic Conceps of Chemistry
- 2. Atomic Structure
- 3. Chemical Equilibrium
- **4.** Ionic Equilibrium

Module-2(PC)

- 1. Thermodynamics & Thermochemistry
- 2. Redox Reaction
- **3.** States Of Matter (Gaseous & Liquid)

Module-3(IC)

- 1. Periodic Table
- 2. Chemical Bonding
- 3. Hydrogen & Its Compounds
- 4. S-Block

Module-4(OC)

- 1. Nomenclature of
- Organic Compounds
- 2. Isomerism
- 3. General Organic Chemistry

Module-5(OC)

- 1. Reaction Mechanism
- 2. Hydrocarbon
- **3.** Aromatic Hydrocarbon
- 4. Environmental Chemistry & Analysis Of Organic Compounds

BIOLOGY

Module-1

- 1. Diversity in the Living World
- 2. Plant Kingdom
- 3. Animal Kingdom

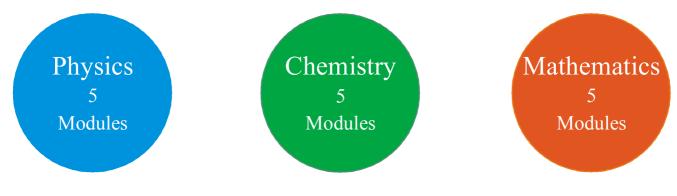
Module-2

- 1. Morphology in Flowering Plants
- **2.** Anatomy of Flowering Plants
- **3.** Structural Organization in Animals

Module-3

- 1. Cell: The Unit of Life
- 2. Biomolecules
- 3. Cell Cycle & Cell Division
- 4. Transport in Plants
- 5. Mineral Nutrition

Module-4


- 1. Photosynthesis in Higher Plants
- 2. Respiration in Plants
- 3. Plant Growth and Development
- 4. Digestion & Absorption
- 5. Breathing & Exchange of Gases

Module-5

- Body Fluids & Its Circulation
 Excretory Products & Their Elimination
- **3.** Locomotion & Its Movement
- 4. Neural Control & Coordination
- **5.** Chemical Coordination and Integration

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

12th Class Modules Chapter Details

PHYSICS

Module-1

- 1. Electrostatics
- 2. Capacitance

Module-2

- 1. Current Electricity
- 2. Magnetic Effect of Current and Magnetism

Module-3

- 1. Electromagnetic Induction
- 2. Alternating Current

Module-4

- 1. Geometrical Optics
- 2. Wave Optics

Module-5

- 1. Modern Physics
- 2. Nuclear Physics
- 3. Solids & Semiconductor Devices
- 4. Electromagnetic Waves

CHEMISTRY

Module-1(PC)

- 1. Solid State
- 2. Chemical Kinetics
- **3.** Solutions and Colligative Properties

Module-2(PC)

- 1. Electrochemistry
- 2. Surface Chemistry

Module-3(IC)

- 1. P-Block Elements
- 2. Transition Elements (d & f block)
- 3. Co-ordination Compound
- 4. Metallurgy

Module-4(OC)

- 1. HaloAlkanes & HaloArenes
- Alcohol, Phenol & Ether
 Aldehyde, Ketone &
- Carboxylic Acid

Module-5(OC)

- 1. Nitrogen & Its Derivatives
- 2. Biomolecules & Polymers
- 3. Chemistry in Everyday Life

BIOLOGY

Module-1

- 1. Reproduction in Organisms
- 2. Sexual Reproduction in
- Flowering Plants
- 3. Human Reproduction
- 4. Reproductive Health

Module-2

- **1.** Principles of Inheritance and Variation
- 2. Molecular Basis of Inheritance
- **3.** Evolution

Module-3

- 1. Human Health and Disease
- 2. Strategies for Enhancement in
- Food Production
- 3. Microbes in Human Welfare

Module-4

- **1.** Biotechnology: Principles and Processes
- 2. Biotechnology and Its
- Applications
- 3. Organisms and Populations

Module-5

- 1. Ecosystem
- 2. Biodiversity and Conservation
- 3. Environmental Issues

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do