This PDF is the Sample PDF taken from our Comprehensive Study Material for NEET & AIIMS

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

ETOOS Comprehensive Study Material For NEET & AIIMS

CHAPTER

CHEMICAL BONDING

The nature of the chemical bond is the problem at the heart of all chemistry.

"BRYCE CRAWFORD"

INTRODUCTION

The attractive force which holds various constituents (atoms, ions, etc,) together in different chemical species is called a chemical bond. Since the formation of chemical compounds takes place as a result of combination of atoms of various elements in different ways, it raises many questions. why do atoms combine? Why are only certain embinations possible? Why do molecules possess definite shapes? To answer such questions different theories and concepts have been put forward from time to time. These are kossel-Lewls approach, valence Shell Electron Pair Repulsion (VSEPR) Theory, Valence Bond (VB) Theory and Molecular orbital and the interpretation of the nature of chemical bonds have closely been related to the developments in the understanding of the structure of atom, the electronic configuration of elements and the periodic table. Every system tends to be more stable and bonding is nature's way of lowering the energy of the system to attain stability .

Compounds of Noble Gases

Noble gases which have already completed their octets (or douplet in case of He.) should not form compounds. However, their compounds like XeF_2 , $XeF_6 \& KrF_2$ etc., have been actually prepared.

CLASSIFICATION OF BONDS

Covalent Bond

(a) A covalent bond is formed by the mutual sharing of electrons between two atoms of electronegativity elements to complete their octet. (Except H which completes its duplet)

(b) The shared pair of electrons should have opposite spins, and are localised between two atoms concerned.

(c) Shan mg of clectrons may occurs in three ways	(c)	Shairing of	felectrons	may occurs	in three	ways -
---	-----	-------------	------------	------------	----------	--------

No. of electrons shared	Bonded Electron pair	Bond	
between two atoms			
2	1	Single bond (–)	
4	2	Double bond (=)	
6	3	Triple bond (\equiv)	

Ex. $H = \dot{N} = H$ {Three single bonds (not triple bond) H

 $N \equiv N$ Triple bond. (not three single bond) O = O (Double bond) H - O - H (Two single bonds.) Co-ordinate Bond

- (a) It is a covalent bond in which the shared electron pair come from one atom is called coordinate bond.
- (b) Necessary conditions for the formation of co-ordinate bond are -
 - (i) Octet of donor atom should be complete and should have atleast one lone pair of electron.

etoosindia.com

Etoos Tips & Formulas

Hybridisation Sr. No. Structure Bond Angle Examples 180° BeF, 1. Linear sp F — Be — F F 2. Triagonal planar 120° sp^2 BF₃ H 3. Tetrahedral sp³ 109°28' CH_4 Η C1Cl C1p 4. sp³d Trigonal bipyramidal 3 orbitals-120° PCl₅ 2 perpendicular orbitals Ċ1 Structure of PCl_5 E F 5. sp³d² Octahedral 90° between SF₆ all hybrid orbitals F F pentagonalbipiramidal F 6. sp³d³ 5 bond angle 72° \mathbb{IF}_{7} and 10 bond angles 90° F F F

SOLVED EXAMPLE

Ex.1 Which of the following will be strongest Lewis Ex.5 base ?

(A) CH ₃ CN	$(\mathbf{B}) \operatorname{CH}_{3} \operatorname{NH}_{2}$		
$(C) N_2$	(D) None of these		

Sol. (B) In CH_3NH_2 , hybridisation of N is sp^3 while in CH_3CN hybridisation of N is $sp. N_2$ is also sp hybridised.

We know that in hybridisation, as s-character increases the electronegativity of atom also increases. Due to this tendency the release of lone pair of electrons becomes some what difficult. In methyl amine the nitrogen is in sp³ hybridisation and therefore the donation of the lone pair of electron will be quite easier; so it is strongest Lewis base.

- **Ex.2** Which type of hybridisation is found in H_3O^+ ?
- Sol. According to steric no. rule Steric number = Number of bond pair(s) + number of lone pair(s) at central atom

$$H \rightarrow H^{+}$$

So, steric number = 3 + 1 = 4.

Thus the hybridisation of oxygen in H_3O^+ is sp³.

- **Ex.3** Classify the following bonds as ionic, polar covalent or covalent and give your reasons :
 - (A) SiSi bond in Cl₃SiSiCl₃
 - (B) SiCl bond in Cl₃SiSiCl₃
 - (C) CaF bond in CaF_2
 - (D) NH bond in NH₃
- Sol. (A) Covalent, due to identical electronegativity.(B) Covalent, due to less electronegativity difference.

(C) Ionic, due to more electronegativity difference.

(D) Covalent, due to nearly similar electronegativity.

Ex. 4 (A) Which one has highest and lowest melting point and why?

NaCl KCl RbCl CsCl (B) Why melting points of cesium halide (CsX) decrease in the order given below ? CsF > CsCl > CsBr > CsI.

Sol. (A) NaCl will have highest lattice energy on account of the smaller Na⁺ while CsCl has lowest lattice energy on account of the larger Cs⁺. Hence NaCl has highest melting point and CsCl has lowest melting point.

(B) As size of anions increase their polarisability increases thus their covalent character increases and melting point decrease.

Which is **incorrect** statement?

(A) In $CF_2=C=CF_2$ molecule all the four fluorine atoms are not in the same plane.

(B) Ka_2 of fumaric acid is more than Ka_2 of maleic acid due to intra molecular hydrogen bonding in maleic acid.

(C) The O–O bond length in $\rm O_2[AsF_4]$ is longer than $\rm KO_2$

(D) The bond angle order in halogen -S - halogen is $OSF_2 < OSCl_2 < OSBr_2$

Ans. (C)

(A)

Sol.

As both carbon atoms are in different planes, all the four fluorine atoms are not in the same plane.

Due to intramolecular hydrogen bonding the maleate ion gets stabilized and thus removal of second hydrogen becomes quite difficult.

(C)
$$O_2[AsF_4] = O_2^+$$
 B.O=2.5
K $O_2 = O_2^-$ B.O=1.5

Bond order $\propto \frac{1}{\text{bond length}}$; so O_2^+ has smaller

bond length than O_2^-

(**D**) Greater the size of the halogen atoms greater will be the steric repulsions and thus larger will be the bond angles.

- **Ex. 6** Which of the compounds $MgCO_3$ and $ZnCO_3$ is thermally more stable ? Explain.

100

PHYSICS FOR NEET & AIIMS

	Exercise # 1	SINGLE OBJ	ECTIV	VE	NEET LEVEL	
1.	Which forms a crystal of (A) NaCl molecules (C) Na and Cl atoms	of NaCl (B) Na ⁺ and Cl ⁻ ions (D) None of the above	11.	Which molecules h (A) H ₂ O (C) HF	as zero dipole moment (B) CO ₂ (D) HBr	
2.	When sodium and chlo (A) Energy is released (B) Energy is released a	orine reacts then and ionic bond is formed nd a covalent bond is formed	12.	In the following wh (A) BF ₃ (C) BeCl ₂	ich one have zero dipole moment (B) CCl ₄ (D) All of these	
	(C) Energy is absorbed(D) Energy is absorbed	and ionic bond is formed and covalent bond is formed	13.	Which molecule ha (A) HCl	as the largest dipole moment (B) HI (D) HE	
3.	Which one is least ionic (A) AgCl (C) BaCl ₂	in the following compounds (B) KCl (D) CaCl ₂	14.	The unequal shari between two atoms	ng of bonded pair of electrons in a molecule causes	
4.	The valency of sulphur (A) 2 (C) 6	in sulphuric acid is (B) 4 (D) 8		 (A) Dipole (B) Radical formation (C) Covalent bond (D) Decomposition of molecule 		
5.	The number of electr formation of N_2 molecu	ectrons involved in the bond ecule	15.	Which one in the following is not the resonance structure of		
	(A) 2 (C) 6	(B)4 (D)10		(A) O = C = O	$(B) \ \overline{O} - C \equiv O^+$	
6.	The electronic configuration of four elements are given in brackets $L(1s^2, 2s^22p^1); M(1s^2, 2s^22p^5)$		16.	(C) $^{+}O \equiv C - O^{-}$ Which of the follow of non-bonding ele (A) CH ₄	(D) $O \equiv C = O$ wing molecule contains one pair ectrons (B) NH ₃ (D) UN ₃	
	$Q(1s^2, 2s^2 2p^6, 3s^2)$ The element that would molecule is (A) Q (C) R	 ¹); R (1s², 2s² 2p²) most readily form a diatomic (B) M (D) L 	17.	(C) H_2O Resonance is due t (A) Delocalization (B) Delocalization (C) Migration of H (D) Migration of p	(D) HF to of sigma electrons of pi electrons atoms rotons	
7.	Which species has the pair of electrons on the (A) $[ClO_3]^-$ (C) SF ₄	maximum number of lone central atom? (B) XeF_4 (D) $[I_3]^-$	18.	Resonating structu (A) Atomic arrange (B) Electronic arran (C) Functional gro	res have different ements ngements ups	
ð.	A simple example of a exhibited by (A) C_2H_2 (C) NH.	(B) H_2SO_4 (D) HCl	19.	The structure of (A) Square planar	$\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_4^{++}$ ion is (B) Tetrahedral	
9.	(C) Thu ₃ The bond that exists be (A) Electrovalent (C) Coordinate	 (B) Herei (B) Covalent (D) Hydrogen 	20.	(C) Distorted recta The bond angle in close to (A) 90°	ngle (D) Octahedral n PH ₃ would be expected to be (B) 105°	
10.	Which of the following	does not have a coordinate		(C) 109°	(D) 120°	
	bond (A) SO_2 (C) H_2SO_4	(B) HNO ₃ (D) HNO ₂	21.	In which molecule (A) CH_4 (C) PF_3	are all atoms coplanar (B) BF ₃ (D) NH ₃	

etoosindia.com

India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

CHEMICAL BONDING

ŀ	Exercise # 2	SINGLE OBJ	ECTIV	/E	AIIMS LEVEL
1.	Pick out among the follow with CO_2 .	ving species isoelectronic		(A) 'a' & 'b' (C) only 'd'	(B) 'b' & 'd'(D) None of these
	(A) N_3^- (C) (NCN) ²⁻	(B) (CNO)⁻(D) All of these	9.	Effective overlap	bing will be shown by :
2.	The correct order of incre CO, CO_3^{2-} , CO_2 is :	asing C-O bond length of		$(A) \oplus \bigcirc + \oplus \bigcirc$ $(C) \oplus \bigcirc + \bigcirc \oplus$	(B) \textcircled{B} + \textcircled{B}
	(A) $CO_3^{2-} < CO_2 < CO$ (C) $CO < CO_3^{2-} < CO_2$	(B) $CO_2 < CO_3^{2-} < CO$ (D) $CO < CO_2 < CO_3^{2-}$	10.	The covalency of	nitrogen in HNO_3 is
3.	The average charge on ea bond order of I–O bond in	ach O atom and average 1 IO_6^{5-} is :		(A) 0 (C) 4	(B) 3 (D) 5
	(A) –1 and 1.67 (C) –5/6 and 1.33	(B) – 5/6 and 1.67 (D) –5/6 and 1.167	11.	What is covalence (A) 5	y of I in IF ₇ ? (B) 3
	O II y			(C)7	(D) 1
4.	$H-O \xrightarrow{x} C \xrightarrow{z} O^{-}$ The relation bicarbonate ion with resp	ion between x, y and z in ect to bond length is :	12.	In which of the foll state	owing N is in the sp ² hybridisation
	(A) x > y > z (C) z=y>x	(B) $x > z > y$ (D) $x > y = z$		(A) (CH ₃) ₃ N (C) CH ₃ CN	(B) CH_3CONH_2 (D) NO_2^+
5.	Indicate the wrong statement :		13.	In pent-3-en-1-yne the terminal carbon-atoms have following hybridisation	
	(B) p-orbitals always overlapping	s have only sidewise		(A) sp & sp ² (C) sp ² & sp	(B) sp ² & sp ³ (D) sp & sp ³
	(C) s-orbitals never form π - bonds (D) There can be only one sigma bond between two		14.	Identify the correct	et match.
<i>,</i>	atoms			(i) XeF ₂	
0.	C ₃ ⁴⁻ has (A) two σ and two π bond (B) three σ and one π bond (C) two σ and one π bond (D) two σ and three π bond			(A) Central atom geometry.	has sp ³ hybridisation and bent
				 (ii) N₃⁻ (B) Central ator octahedral. 	n has sp^3d^2 hybridisation and
7.	How many bonds are there in ??			(iii) PCl ₆ ⁻ (PCl ₅ (s) (C) Central atom	anion) has sp hybridisation and linear
	(A) 13 (C) 20	(B) 23 (D) 26		(iv) ICl ⁺ (I Cl (l)	(cation)
8.	Which of the following [assuming z-axis to be the	g overlaps is incorrect internuclear axis]?		(IV) ICl_2 (I ₂ Cl ₆ (ϵ) (D) Central atom geometry.	has sp ³ d hybridisation and linear
	(A) $2 p_y + 2 p_y \rightarrow \pi 2 p_y$ (B) $2 p_y + 2 p_y \rightarrow \pi 2 p_y$			(A) $(i-a)$, $(ii-b)$,	(iii - c), (iv - d)
	(b) $2 p_z + 2 p_z \rightarrow \sigma 2 p_z$ (C) $2 p_z + 2 p_z \rightarrow \pi 2 p_z$			$(\mathbf{B}) (1-d), (11-b), (111-d), (1v-c)$	
	(D) $1 s + 2 p_y \rightarrow \pi (1 s - 2 p_x)$	9 _y)		(D) $(i-d)$, $(ii-c)$, $(ii-c)$,	(iii-a), (iv-a) (iii-b), (iv-a)

etoosindia.com

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

PHYSICS FOR NEET & AIIMS

	Exercise # 3 PART - 1	MATRIX MATCH COLUMN
1.	Column-I	Column-II
	(A) H ₃ P ₃ O ₉	(p) S–O–S bond is present
	$(\mathbf{B})\mathrm{H}_{2}\mathrm{S}_{2}\mathrm{O}_{7}$	(q) Di-basic acid
	(C) H ₂ S ₄ O ₆	(r) P–O–P bond is present
	$(D) H_4 P_2 O_5$	(s) Central atom (S or P) in maximum oxidation state.
2.	Column-I	Column-II
	(A) N_2^+ is stable than N_2^-	(p) due to one have greater number of electrons in antibonding molecular orbitals than other
	(B) NO can easily lose its electron than N_2	(q) one has B.O. 3 and other has 2.5
	(C) NO have large bond length than NO^+	(r) both are paramagnetic with same bond order
	(D) He ₂ ⁺ exists, but is less stable than H ₂ ⁺	(s) one is paramagnetic and other diamagnetic
3.	Column – I	Column – II
	(A) SO_3 (gas)	(p) Polar with $p\pi$ -d π bonds and identical S–O bond, lengths.
	(B) OSF_4	(q) One lone pair and $p\pi - d\pi$ bond.
	(C) SO_3F^-	(r) Non-polar with $p\pi - p\pi$ and $p\pi - d\pi$ bonds. Identical S-O bond lengths.
	(D) ClOF ₃	(s) Polar with $p\pi - d\pi$ bond.
4.	Column – I	Column – II
	(A) IF_2^-	(p) sp ³ d
	$(\mathbf{B}) \operatorname{ClF}_3$	(q) polar
	(\mathbb{C}) XeO ₃ F ₂	(r) one of the bond angles is 180° .
	(D) SF_4	(s) one lone pair
5.	Column-I	Column-II
	(A) Blue vitriol	(p) Ionic bond
	(B) Gypsum	(q) Covalent bond
	(C) Pure orthophosphoric acid	(r) Hydrogen bond
	(D) Chloral hydrate	(s) Resonance stabilisation

etoosindia.com

CHEMICAL BONDING

	Exercise # 4	PART - 1		PREVIOUS YEAR (NEET/AIPMT)
1.	Which one of the followi linear polymeric strue	ng molecules will form a cture due to hydrogen	orm a 8. Which of the following two are isostructur		two are isostructural ? ICBSE AIPMT 2001
	bonding ? (A) NH ₃	[CBSE AIPMT 2000] (B) H ₂ O (D) HE		(A) XeF_2 , and lF_2^- (C) CO_3^{2-} , and SO_3^{2-}	(B) NH ₃ , and BF ₃ (D) PCl ₅ , and lcl_5
2.	Which one of the following	ng is planar ?	9.	In which of the following, bond angle is maxi [CBSE AIPMT]	
	(A) XeF_4 (C) $XeO F_4$	[CBSE AIPMT 2000] (B) XeO ₄ (D) XeO F		(A) NH ₃ (C) PCl ₃	(B) NH_4^+ (D) SCl_2
3.	The relationship between of N_2 and N_2^+ is	the dissociation energy [CBSE AIPMT 2000]	10.	In X–H Y, X and Y both are electrone elements, then [CBSE AIPMT 2] (A) electron density on X will increase and or	
	(A) dissociation energy energy of N_2 (B) dissociation energy of	(A) dissociation energy of N_2^+ > dissociation energy of N_2		decrease (B) in both electron density will increase (C) in both electron density will decrease	
	of N_2^+	I > dissociation energy of		increase	ity will decrease and on H
	(c) dissociation energy N_2^+ (D) dissociation energy of higher than the diagonal sector N_2^+	f_2 can either be lower or	11.	Main axis of a diatomi orbital, p_x and p_y overl following orbitals?	c molecule is z molecular aps to form which of the [CBSE AIPMT 2001]
4.	Which one of the following	ng is not paramagnetic ?		(A) π -molecular orbital (C) δ -molecular orbital	(B) σ-molecular orbital(D) NO bond will form
	(A) NO	$[CBSE AIPMT 2000] \\ (B) N_2^+$	12.	Which of the following	is isoelectronic ? [CBSE AIPMT 2002]
5.	(C) CO Among the following gro	(D) O_2^- oup which represents the		(A) CO ₂ , NO ₂ (C) CN ⁻ , Co	(B) NO_2^-, CO_2 (D) SO_2, CO_2
	collection of isoelectronic species ? [CBSE AIPMT 2000]		13.	Which of the following	has pπ - dπ bonding ? [CBSE AIPMT 2002]
	(A) NO, CN^- , $N_2O_2^-$			(A) NO_3^-	(B) SO_3^{2-}
	(B) NO ⁺ , CO_2^{2-}, O_2^{-}, CO			(C) BO ₃ ³⁻	(D) CO_3^{2-}
	(C) N_2, C_2^{2-}, CO, NO	(C) N_2, C_2^{2-}, CO, NO 14. In		In NO_3^- ion number of bond pair and lone pair of electrons on nitrogen atom are	
6	(D) CO, NO ⁺ , CH ⁻ , C_2^{2-}	our which corresponds the		(A)2,2	[CBSE AIPMT 2002] (B) 3, 1
0.	collection of isoelectronic species ?		15	(C) 1, 3 Which of the following	(D) 4, 0
	(A) NO_2^-	$(B) NO_{\overline{2}}$	15.	sigma and pi-bonds for atoms?	med between two carbon
	(C) PO ₄ ³⁻	(D) CO_3^{2-}		(A) Free rotation of ato allowed but not in of	oms about a sigma bond is case of a pi-bond
7.	A compound contains ato and C. If the oxidation num that of C is -2 , the p compound is	ms of three elements A, B nber of A is +2, B is +5 and ossible formula of the ICBSE AIPMT 20001		 (B) Sigma bond determines the direction betwee carbon atoms but a pi-bond has no prime effect in this regard (C) Sigma bond is stronger than a pi-bond 	
	(A) $A_2(BC_3)_2$ (C) $A_3(B_4C)_2$	(B) $A_3(BC_4)_2$ (D) ABC_2		(D) Bond energyies of the order of 264 respectively	sigma and pi-bonds are of kJ/mol and 347 kJ/mol.

etoosindia.com Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

respectively

PHYSICS FOR NEET & AIIMS

		MOCI	K TEST		
1.	Among the following species, identify the isostructural pairs, NF_3 , NO_3^- , BF_3 , H_3O^+ , HN_3				
	(A) $[NF_3, NO_3^-]$ and $[BF_3]$	G ₃ , H ₃ O ⁺]	(B) $[NF_3, HN_3]$ and $[N$	$[O_3^-, BF_3]$	
	(C) $[NF_3, H_3O^+]$ and $[N$	$O_{3}^{-}, BF_{3}]$	(D) $[NF_3, H_3O^+]$ and $[H_3O^+]$	HN ₃ , BF ₃]	
2.	In the compound $CH_2 =$	$CH - CH_2 - CH_2 - C \equiv C$	H, the $C_2 - C_3$ bond is of th	ie type	
	(A) $sp - sp^2$	(B) $sp^3 - sp^3$	(C) $sp - sp^3$	(D) $sp^2 - sp^3$	
3.	The correct order of incre	easing C – O bond length	of CO, CO_3^{2-} , CO_2 is		
	(A) $CO_3^{2-} < CO_2 < CO$	(B) $CO_2 < CO_3^{2-} < CO$	(C) $CO < CO_3^{2-} < CO_2$	(D) $\text{CO} < \text{CO}_2 < \text{CO}_3^{2-}$	
4.	In the dichromate dianion (A) $4 Cr - O$ bonds are eq (C) All Cr - O bonds are	uivalent equivalent	(B) 6 Cr – O bonds are e (D) All Cr – O bonds are	quivalent non-equivalent	
5.	Hybridisation state of chl (A) sp ³	orine in CIF ₃ is (B) sp ³ d	(C) sp^3d^2	(D) sp^3d^3	
6.	In which of the following	, the central atom does no	t use sp ³ hybrid orbitals in it	ts bonding	
	(A) BeF_3^-	(B) OH ₃ ⁺	(C) NH_2^-	$(\mathbb{D}) \operatorname{NF}_{3}$	
7.	The magnetic moment of molecule	$K_3[Fe(CN)_6]$ is found to	be 1.7 B.M. How many unp	aired electron (s) is/are present pe	
	(A) 1	(B) 2	(C) 3	(D)4	
8.	N_2 and O_2 are converted i	into monocations N_2^+ and	O_2^+ respectively. Which is	wrong	
	(A) In N_2 the N – N bond	weakens	(B) In O_2 the O – O bon	d order increases	
	(C) In O_2 paramagnetism	decreases	(D) N_2^+ becomes diamage	gnetic	
9.	The common features among the species CN ⁻ , CO ar (A) Bond order three and isoelectronic (C) Bond order two and -acceptors		nd NO+ are (B) Bond order three and weak field ligands (D) Isoelectronic and weak field ligands		
10.	The number of S – S bond (A) Three	ds in sulphur trioxide trim (B) Two	er S_3O_9 is (C) One	(D) Zero	
11.	Select the most ionic and CrO ₅ , M	most covalent compound Mn_2O_7 , PbO, P_4O_{10} , SnO_2	s respectively from the follo	wing.	
	$(\mathbf{A})\mathrm{CrO}_{5},\mathrm{Mn}_{2}\mathrm{O}_{7}$	$(\mathbf{B})\mathrm{Mn}_{2}\mathrm{O}_{7},\mathrm{PbO}$	(C) CrO_5, P_4O_{10}	(D) CrO_5 , SnO_2	
12.	In which of the following (A) IO_4^- , ICl_4^- , IF_4^+ (B) SO_3^- , SO_3^{2-} , SO_4^{2-}	sets central atom of each	 member involves sp³ hybrid (B) XeO₃, XeO₄, XeF₄ (D) PCl⁺₄, BF⁻₄, ClO⁻₄ 	lisation ?	

etoosindia.com

India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

11th Class Modules Chapter Details

PHYSICS

CHEMISTRY

Module-1

- 1. Physical World & Measurements
- 2. Basic Maths & Vector
- 3. Kinematics

Module-2

- 1. Law of Motion & Friction
- 2. Work, Energy & Power

Module-3

- **1.** Motion of system of
- particles & Rigid Body
- 2. Gravitation

Module-4

- 1. Mechanical Properties of Matter
- 2. Thermal Properties of Matter

Module-5

- 1. Oscillations
- 2. Waves

Module-1(PC)

- 1. Some Basic Conceps of Chemistry
- 2. Atomic Structure
- 3. Chemical Equilibrium
- **4.** Ionic Equilibrium

Module-2(PC)

- 1. Thermodynamics & Thermochemistry
- 2. Redox Reaction
- **3.** States Of Matter (Gaseous & Liquid)

Module-3(IC)

- 1. Periodic Table
- 2. Chemical Bonding
- 3. Hydrogen & Its Compounds
- 4. S-Block

Module-4(OC)

- 1. Nomenclature of
- Organic Compounds
- 2. Isomerism
- 3. General Organic Chemistry

Module-5(OC)

- 1. Reaction Mechanism
- 2. Hydrocarbon
- **3.** Aromatic Hydrocarbon
- 4. Environmental Chemistry & Analysis Of Organic Compounds

BIOLOGY

Module-1

- 1. Diversity in the Living World
- 2. Plant Kingdom
- 3. Animal Kingdom

Module-2

- 1. Morphology in Flowering Plants
- **2.** Anatomy of Flowering Plants
- **3.** Structural Organization in Animals

Module-3

- 1. Cell: The Unit of Life
- 2. Biomolecules
- 3. Cell Cycle & Cell Division
- 4. Transport in Plants
- 5. Mineral Nutrition

Module-4

- 1. Photosynthesis in Higher Plants
- 2. Respiration in Plants
- 3. Plant Growth and Development
- 4. Digestion & Absorption
- 5. Breathing & Exchange of Gases

Module-5

- Body Fluids & Its Circulation
 Excretory Products & Their Elimination
- **3.** Locomotion & Its Movement
- 4. Neural Control & Coordination
- **5.** Chemical Coordination and Integration

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

12th Class Modules Chapter Details

PHYSICS

Module-1

- 1. Electrostatics
- 2. Capacitance

Module-2

- 1. Current Electricity
- 2. Magnetic Effect of Current and Magnetism

Module-3

- 1. Electromagnetic Induction
- 2. Alternating Current

Module-4

- 1. Geometrical Optics
- 2. Wave Optics

Module-5

- 1. Modern Physics
- 2. Nuclear Physics
- 3. Solids & Semiconductor Devices
- 4. Electromagnetic Waves

CHEMISTRY

Module-1(PC)

- 1. Solid State
- 2. Chemical Kinetics
- **3.** Solutions and Colligative Properties

Module-2(PC)

- 1. Electrochemistry
- 2. Surface Chemistry

Module-3(IC)

- 1. P-Block Elements
- 2. Transition Elements (d & f block)
- 3. Co-ordination Compound
- 4. Metallurgy

Module-4(OC)

- 1. HaloAlkanes & HaloArenes
- Alcohol, Phenol & Ether
 Aldehyde, Ketone &
- Carboxylic Acid

Module-5(OC)

- 1. Nitrogen & Its Derivatives
- 2. Biomolecules & Polymers
- 3. Chemistry in Everyday Life

BIOLOGY

Module-1

- 1. Reproduction in Organisms
- 2. Sexual Reproduction in
- Flowering Plants
- 3. Human Reproduction
- 4. Reproductive Health

Module-2

- **1.** Principles of Inheritance and Variation
- 2. Molecular Basis of Inheritance
- **3.** Evolution

Module-3

- 1. Human Health and Disease
- 2. Strategies for Enhancement in
- Food Production
- 3. Microbes in Human Welfare

Module-4

- **1.** Biotechnology: Principles and Processes
- 2. Biotechnology and Its
- Applications
- 3. Organisms and Populations

Module-5

- 1. Ecosystem
- 2. Biodiversity and Conservation
- 3. Environmental Issues

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do