This PDF is the Sample PDF taken from our Comprehensive Study Material for IIT-JEE Main \& Advanced

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do


## ETOOS Comprehensive Study Material For JEE- Main \& Advanced

## FUNCTION

## $\bullet$

## DEFINITION

A relation $R$ from a set $A$ to a set $B$ is called a function if each element of $A$ has unique image in $B$.
It is denoted by the symbol.
$f: \mathrm{A} \rightarrow \mathrm{B}$
or
$\mathrm{A} \xrightarrow{f} \mathrm{~B}$
which reads $f$ ' is a function from A to B 'or' $f$ maps A to B ,
If an element $\mathrm{a} \in \mathrm{A}$ is associated with an element $\mathrm{b} \in \mathrm{B}$, then b is called 'the $f$ image of a ' or 'image of a under $f$ 'or' the value of the function $f$ at a '. Also a is called the pre-image of b or argument of b under the function $f$. We write it as

$$
\mathrm{b}=f(\mathrm{~A}) \quad \text { or } \quad f: \mathrm{a} \rightarrow \mathrm{~b} \text { or } f:(\mathrm{a}, \mathrm{~b})
$$

Thus a function ' $f$ ' from a set A to a set B is a subset of $\mathrm{A} \times \mathrm{B}$ in which each ' a ' belonging to A appears in one and only one ordered pair belonging to $f$.

## ETOOS KEY POINTS

Every function from $\mathrm{A} \rightarrow \mathrm{B}$ satisfies the following conditions .
(I) $\mathrm{f} \subset \mathrm{AxB}$
(ii) $\forall \mathrm{a} \in \mathrm{A} \Rightarrow(\mathrm{a}, \mathrm{f}(\mathrm{A})) \in \mathrm{f}$ and
(iii) $(a, b) \in f \quad \& \quad(a, c) \in f \quad \Rightarrow \quad b=c$

## REPRESENTATION OF FUNCTION

(A) Ordered pair : Every function from $\mathrm{A} \rightarrow \mathrm{B}$ satisfies the following conditions :
(i) $f \subset \mathrm{AxB}$
(ii) $\forall \mathrm{a} \in \mathrm{A}$ there exist $\mathrm{b} \in \mathrm{B}$
and
(iii)
$(\mathrm{a}, \mathrm{b}) \in f \&(\mathrm{a}, \mathrm{c}) \in f \Rightarrow \mathrm{~b}=\mathrm{c}$
(B) Formula based (uniformly/nonuniformly):
e.g.
(i)

$$
f: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{y}=f(\mathrm{x})=4 \mathrm{x}, f(\mathrm{x})=\mathrm{x}^{2}
$$

(uniformly defined)
(ii)
$f(x)=\left\{\begin{array}{ll}x+1 & -1 \leq x<4 \\ -x & 4 \leq x<7\end{array} \quad\right.$ (non-uniformly defined)
(iii)
$f(x)= \begin{cases}x^{2} & x \geq 0 \\ -x-1 & x<0\end{cases}$
(non-uniformly defined)
(C) Graphical representation :


Graph (1)


Graph (2)

Graph(1) represent a function but graph(2) does not represent a function.

## Domain, Co-domain \& Range Of A Function

Let $f: \mathrm{A} \rightarrow \mathrm{B}$, then the set A is known as the domain of $f \&$ the set B is known as co-domain of $f$. The set of $f$ images of all the elements of A is known as the range of $f$.
Thus: Domain of $f=\{\mathrm{a} \mid \mathrm{a} \in \mathrm{A},(\mathrm{a}, f(\mathrm{~A})) \in f\}$
Range of $f=\{f(\mathrm{~A}) \mid \mathrm{a} \in \mathrm{A}, f(\mathrm{~A}) \in \mathrm{B}\}$

## ETOOS KEY POINTS

(i) If a vertical line cuts a given graph at more than one point then it can not be the graph of a function.
(ii) Every function is a relation but every relation is not necessarily a function.
(iii) It should be noted that range is a subset of co-domain.
(iv) If only the rule of function is given then the domain of the function is the set of those real numbers, where function is defined. For a continuous function, the interval from minimum to maximum value of a function gives the range

## METHODS OF DETERMINING RANGE

(i) Representing $x$ in terms of $y$

If $y=f(x)$, try to express as $x=g(y)$, then domain of $g(y)$ represents possible values of $y$, which is range of $f(x)$.

Ex. Find the range of $f(x)=\frac{x^{2}+x+1}{x^{2}+x-1}$
Sol. $f(x)=\frac{x^{2}+x+1}{x^{2}+x-1}\left\{x^{2}+x+1\right.$ and $x^{2}+x-1$ have no common factor $\}$
$y=\frac{x^{2}+x+1}{x^{2}+x-1}$
$\Rightarrow \quad y x^{2}+y x-y=x^{2}+x+1$
$\Rightarrow \quad(\mathrm{y}-1) \mathrm{x}^{2}+(\mathrm{y}-1) \mathrm{x}-\mathrm{y}-1=0$
If $y=1$, then the above equation reduces to $-2=0$. Which is not true.
Further if $y \neq 1$, then $(y-1) x^{2}+(y-1) x-y-1=0$ is a quadratic and has real roots if
$(y-1)^{2}-4(y-1)(-y-1) \geq 0$
i.e. if $\mathrm{y} \leq-3 / 5$ or $\mathrm{y} \geq 1$ but $\mathrm{y} \neq 1$

Thus the range is $(-\infty,-3 / 5] \cup(1, \infty)$
(ii) Graphical Method

The set of $y$-coordinates of the graph of a function is the range.
Ex. Find the range of $f(x)=\frac{x^{2}-4}{x-2}$
Sol. $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}^{2}-4}{\mathrm{x}-2}=\mathrm{x}+2 ; \mathrm{x} \neq 2$
$\therefore \quad$ graph of $\mathrm{f}(\mathrm{x})$ would be
Thus the range of $\mathrm{f}(x)$ is $R-\{4\}$
Further if $f(x)$ happens to be continuous in its domain then range of $f(x)$ is $[\min f(x)$, max. $f(x)]$. However for sectionally continuous functions, range will be union of $[\min f(x)$, max. $f(x)]$ over all those intervals where $f(x)$ is


## Etoos Tips \& Formulas •

## 1. Definition

If to every value (considered as real unless other-wise stated) of a variable x , which belongs to a set A , there corresponds one and only one finite value of the quantity y which belong to set B , then y is said to be a function of x and written as $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{y}=\mathrm{f}(\mathrm{x})$, x is called argument or independent variable and y is called dependent variable.

Pictorially: $\xrightarrow[\text { input }]{\mathrm{x}} \mathrm{f} \xrightarrow[\text { output }]{\mathrm{f}(\mathrm{x})=\mathrm{y}}$
$y$ is called the image of $\mathrm{x} \& \mathrm{x}$ is the pre-image of y , under f . Every function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ satisfies the following conditions.
(i) $f \subset A \times B$
(ii) $\forall \mathrm{a} \in \mathrm{A}$
$\exists \mathrm{b} \in \mathrm{B}$ such that $(\mathrm{a}, \mathrm{b}) \in \mathrm{f}$ and
(iii) $\operatorname{If}(\mathrm{a}, \mathrm{b}) \in \mathrm{f} \&(\mathrm{a}, \mathrm{c}) \in \mathrm{f} \Rightarrow \mathrm{b}=\mathrm{c}$

## 2. Domain, Co-Domain \& Range of a Function

Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, then the set A is known as the domain of ' f ' \& the set B is known as co-domain of $\mathrm{f}^{\mathrm{f}}$ '. The set of all f images of elements of $A$ is known as the range of ' $f$ '. Thus
Domain of $f=\{x \mid x \in A,(x, f(x)) \in f\}$
Range of $\mathrm{f}=\{\mathrm{f}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{A}, \mathrm{f}(\mathrm{x}) \in \mathrm{B}\}$
range is a subset of co-domain.

## 3. Important Types of Function

(A) Polynomial function :

If a function ' $f$ ' is called by $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots \ldots . .+a_{n-1}{ }^{x+a}{ }_{n}$ where $n$ is a non negative integer and $a_{0}, a_{1}, a_{2}, \ldots \ldots . . a_{n}$ are real numbers and $a_{0} \neq 0$, then $f$ is called a polynomial function of degree $n$.

## Note

(I) A polynomial of degree one with no constant term is called an odd linear function. i.e. $f(x)=\mathrm{ax}, \neq 0$.
(ii) There are two polynomial functions, satisfying the relation; $\mathrm{f}(\mathrm{x}), \mathrm{f}(1 / \mathrm{x})$. They are :

$$
\begin{equation*}
f(x)=x^{n}+1 \& \tag{A}
\end{equation*}
$$

(B) $\mathrm{f}(\mathrm{x})=1-\mathrm{x}^{\mathrm{n}}$, where n is a positive integer.
(iii) Domain of a polynofunction is R
(iv) Range of odd degree polynomial is R whereas range of an even degree polynomial is never R .
(B) Algebric function :

A function ' f ' is called an algebric function if it can be constructed using algebric operations (such as addition, subtraction, multiplication, division and taking radicals) straight with polynomials
(C) Rational function :

A rational function is a function of the form $\mathrm{y}=\mathrm{f}(\mathrm{x})=\frac{\mathrm{g}(\mathrm{x})}{\mathrm{h}(\mathrm{x})}$, where $\mathrm{g}(\mathrm{x}) \& \mathrm{~h}(\mathrm{x})$ are polynomials \& $\mathrm{h}(\mathrm{x}) \neq 0$,
Domain : $\mathrm{R}-\{\mathrm{x} \mid \mathrm{h}(\mathrm{x})=0\}$
Any rational function is automatically an algebric function.

## SOLVED EXAMPLES

Ex. 1 Which of the following pictorial diagrams represent the function
(A)

(B)

(C)

(D)


Sol. B and D. In (A) one element of domain has no image, while in (C) one element of $1^{\text {st }}$ set has two images in $2^{\text {nd }}$ set

Ex. 2 Find the Domain of the following function :
(i) $y=\log _{(x-4)}\left(x^{2}-11 x+24\right)$
(ii) $f(x)=\sqrt{x^{2}-5}$
(iii) $\sin ^{-1}(2 x-1)$
(iv) $f(x)=\sqrt{\sin x}-\sqrt{16-x^{2}}$

Sol. (i) $y=\log _{(x-4)}\left(x^{2}-11 x+24\right)$
Here ' $y$ ' would assume real value if,
$\begin{array}{lll}x-4>0 \text { and } \neq 1, x^{2}-11 x+24>0 & \Rightarrow & x>4 \text { and } \neq 5,(x-3)(x-8)>0 \\ \Rightarrow \quad x>4 \text { and } \neq 5, x<3 \text { or } x>8 & \Rightarrow & x>8\end{array}$
$\Rightarrow \quad x>4$ and $\neq 5, x<3$ or $x>8 \quad \Rightarrow \quad x>8$
$\Rightarrow \quad$ Domain $(\mathrm{y})=(8, \infty)$
(ii) $\sqrt{\mathrm{x}^{2}-5} \mathrm{f}(\mathrm{x})=$ is real iff $\mathrm{x}^{2}-5 \geq 0$
$\Rightarrow \quad|x| \geq \sqrt{5} \Rightarrow \quad \mathrm{x} \leq-\sqrt{5}$ or $\mathrm{x} \geq \sqrt{5}$
$\therefore \quad$ the domain of f is $(-\infty,-\sqrt{5}] \cup[\sqrt{5}, \infty)$
(iii) $\quad \sin ^{-1}(2 x-1)$ is real iff $-1 \leq 2 x-1 \leq+1$
$\therefore \quad$ domain is $\mathrm{x} \in[0,1]$
(iv) $\sqrt{\sin x}$ is real iff $\sin x \geq 0 \quad \Leftrightarrow \quad x \in[2 n \pi, 2 n \pi+\pi], n \in I$.
$\sqrt{16-x^{2}}$ is real iff $16-x^{2} \geq 0 \Leftrightarrow-4 \leq x \leq 4$.
Thus the domain of the given function is $\{x: x \in[2 n \pi, 2 n \pi+\pi], n \in I\} \cap[-4,4]=[-4,-\pi] \cup[0, \pi]$.
Ex. 3 Find the range of following functions :
(i) $f(x)=\frac{1}{8-3 \sin x}$
(ii) $f(x)=\frac{x^{2}-4}{x-2}$

Sol. (i) $\mathrm{f}(\mathrm{x})=\frac{1}{8-3 \sin x}$
$-1 \leq \sin x \leq 1$
(ii) $f(x)=\frac{x^{2}-4}{x-2} \quad=x+2 ; x \neq 2$
$\therefore \quad$ graph of $\mathrm{f}(\mathrm{x})$ would be


Thus the range of $f(x)$ is $R-\{4\}$

## Exercise \# 1

1. The domain of $f(x)=\sqrt{\frac{1-|x|}{2-|x|}}$, is -
(A) $(-\infty, \infty)-[-2,2]$
(B) $(-\infty, \infty)-[-1,1]$
(C) $[-1,1] \cup(-\infty,-2) \cup(2, \infty)$
(D) none
2. The domain of the function $f(x)=\sin ^{-1}\left(\frac{1+x^{3}}{2 x^{3 / 2}}\right)+\sqrt{\sin (\sin x)}+\log _{(3\{x\}+1)}\left(x^{2}+1\right)$, where $\{$.$\} represents fractional part function, is:$
(A) $\mathrm{x} \in\{1\}$
(B) $x \in R-\{1,-1\}$
(C) $x>3, x \neq I$
(D) none of these
3. The domain of the function $f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}$, is -
(A) $[-2,0) \cup(0,1)$
(B) $(-2,0) \cup(0,1]$
(C) $(-2,0) \cup(0,1]$
(D) $(-2,0) \cup[0,1]$
4. If $q^{2}-4 p r=0, p>0$, then the domain of the function $f(x)=\log \left(p x^{3}+(p+q) x^{2}+(q+r) x+r\right)$ is:
(A) $R-\left\{-\frac{q}{2 p}\right\}$
(B) $R-\left[(-\infty,-1] \cup\left\{-\frac{q}{2 p}\right\}\right]$
(C) $R-\left[(-\infty,-1) \cap\left\{-\frac{q}{2 p}\right\}\right]$
(D) none of these
5. If $f(x)$ is a polynomial function satisfying the condition $f(x) . f(1 / x)=f(x)+f(1 / x)$ and $f(2)=9$ then -
(A) $2 \mathrm{f}(4)=3 \mathrm{f}(6)$
(B) $14 \mathrm{f}(1)=\mathrm{f}(3)$
(C) $9 \mathrm{f}(3)=\mathrm{f}(5)$
(D) $\mathrm{f}(10)=\mathrm{f}(11)$
6. Domain to function $\sqrt{\log \left\{\left(5 x-x^{2}\right) / 6\right\}}$ is -
(A) $(2,3)$
(B) $[2,3]$
(C) $[1,2]$
(D) $[1,3]$
7. Domain and range of $f(x)=\sqrt{x-1}+2 \sqrt{3-x}$ is
(A) $\mathrm{D}:[1,3] ; \mathrm{R}:[\sqrt{2}, \sqrt{10}]$
(B) $\mathrm{D}:[1,5] ; \mathrm{R}:[\sqrt{2}, \sqrt{10}]$
(C) $\mathrm{D}:(-\infty, 1] \cup[3, \infty), \mathrm{R}:[1, \sqrt{3}]$
(D) $\mathrm{D}:[1,5], \mathrm{R}:[1, \sqrt{3}]$
8. If $A=\{-2,-1,0,1,2\} \& f: A \rightarrow Z ; f(x)=x^{2}+1$, then the range of $f$ is
(A) $\{0,1,2,5\}$
(B) $\{1,2,5\}$
(C) $\{-5,-2,1,2,3\}$
(D) A

## Exercise \# $2>$ Part \# I [Multiple Correct Choice Type Questions]

1. Which of the functions defined below are NOT one-one function(s) ?
(A) $f(x)=5\left(x^{2}+4\right),(x R)$
(B) $g(x)=2 x+(1 / x)$
(C) $h(x)=\ln \left(x^{2}+x+1\right),(x R)$
(D) $f(x)=e^{-x}$
2. Which of the following functions from $Z$ to itself are NOT bijections ?
(A) $f(x)=x^{3}$
(B) $f(x)=x+2$
(C) $f(x)=2 x+1$
(D) $f(x)=x^{2}+x$
3. $\operatorname{If} f(x)=\sin \ln \left(\frac{\sqrt{4-x^{2}}}{1-x}\right)$, then
(A) domain of $f(x)$ is $(-2,1)$
(B) domain of $f(x)$ is $[-1,1]$
(C) range of $f(x)$ is $[-1,1]$
(D) range of $f(x)$ is $[-1,1)$
4. The function $\cot (\sin x)$ -
(A) is not defined for $x=(4 n+1) \frac{\pi}{2}$
(B) is not defined for $\mathrm{x}=\mathrm{n} \pi$
(C) lies between $-\cot 1$ and $\cot 1$
(D) can't lie between - cot 1 and $\cot 1$
5. The graph of function $\mathrm{f}(\mathrm{x})$ is as shown, adjacently. Then the graph of $\frac{1}{f(|x|)}$ is -

(A)

(B)

(C)

(D)


## Exercise \# 3 Part \# I $>$ [Matrix Match Type Questions]

Following questions contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-II can have correct matching with one statement in Column-II.

1. Let $f(x)=\sin ^{-1} x, g(x)=\cos ^{-1} x$ and $h(x)=\tan ^{-1} x$. For what complete interval of variation of $x$ the following are true.

Column - I
(A)

$$
\mathrm{f}(\sqrt{\mathrm{x}})+\mathrm{g}(\sqrt{\mathrm{x}})=\pi / 2
$$

(B) $\quad \mathrm{f}(\mathrm{x})+\mathrm{g}\left(\sqrt{1-\mathrm{x}^{2}}\right)=0$
(C) $g\left(\frac{1-x^{2}}{1+x^{2}}\right)=2 h(x)$
(D) $\quad \mathrm{h}(\mathrm{x})+\mathrm{h}(1)=\mathrm{h}\left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)$
(r) $\quad(-\infty, 1)$
(s) $[-1,0]$

## Column - II

(A) Total number of solution $x^{2}-4-[x]=0$ where [ ] denotes greatest integer function.
(B) Minimum period of $e^{\cos ^{4} \pi x+\cos ^{2} \pi x+x-[x]}$
(C) If $\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}) ; \mathrm{y}=\frac{1}{x}, \mathrm{x} \in \mathrm{R}_{0}\right\}$ and
$B=\{(x, y): y=x, x \in R\}$ then number of
elements in $\mathrm{A} \cap \mathrm{B}$ is (are)
(D) Number of integers in the domain of
$\sqrt{2^{x}-3^{x}}+\log _{3} \log _{1 / 2^{x}}$
3. Column - I
(A) The period of the function
$y=\sin (2 \pi t+\pi / 3)+2 \sin (3 \pi t+\pi / 4)+3 \sin 5 \pi t$ is
(B) $y=\{\sin (\pi x)\}$ is a many one function for $x \in(0, a)$, where $\{x\}$ denotes fractional part of $x$, then a may be
(C) The fundamental period of the function
$y=\frac{1}{2}\left(\frac{|\sin (\pi / 4) x|}{\cos (\pi / 4) x}+\frac{\sin (\pi / 4) x}{|\cos (\pi / 4) x|}\right)$ is
(r) 2
(D) If $\mathrm{f}:[0,2] \rightarrow[0,2]$ is bijective function defined by $f(x)=a x^{2}+b x+c$,
(s) 0 where $a, b, c$ are non-zero real numbers, then $f(2)$ is equal to

## Exercise \# 4

## [Subjective Type Questions]

1. Find the domain of definitions of the following functions :
(i) $\mathrm{f}(\mathrm{x})=\sqrt{3-2^{\mathrm{x}}-2^{1-\mathrm{x}}}$
(ii) $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}+\mathrm{x}+1\right)^{-3 / 2}$
(iii) $\mathrm{f}(\mathrm{x})=\sqrt{\tan \mathrm{x}-\tan ^{2} \mathrm{x}}$
(iv) $f(x)=\log _{10}\left(1-\log _{10}\left(x^{2}-5 x+16\right)\right)$
(v) $\quad \operatorname{If}(\mathrm{x})=\sqrt{x^{2}-5 x+4} \& \mathrm{~g}(\mathrm{x})=\mathrm{x}+3$, then find the domain of $\frac{f}{g}(\mathrm{x})$
(vi) $\mathrm{f}(\mathrm{x})=\frac{1}{[x]}+\log _{1-\{\mathrm{x}\}}\left(\mathrm{x}^{2}-3 \mathrm{x}+10\right)+\frac{1}{\sqrt{2-|x|}}+\frac{1}{\sqrt{\sec (\sin x)}}$
2. Find the range of the following functions :
(i) $\mathrm{f}(\mathrm{x})=1-|\mathrm{x}-2|$
(ii) $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{\mathrm{x}-5}}$
(iii) $f(x)=\frac{1}{2-\cos 3 x}$
(iv) $f(x)=\frac{x+2}{x^{2}-8 x-4}$
(v) $\quad f(x)=\frac{x^{2}-2 x+4}{x^{2}+2 x+4}$
(vi) $\quad f(x)=3 \sin \sqrt{\frac{\pi^{2}}{16}-x^{2}}$
(vii) $f(x)=x^{4}-2 x^{2}+5$
(viiii) $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-12 \mathrm{x}$, where $\mathrm{x} \in[-3,1]$
(ix) $f(x)=\sin ^{2} x+\cos ^{4} x$
3. Let f be a function such that $f(3)=1$ and $f(3 x)=x+f(3 x-3)$ for all $x$. Then find the value of $f(300)$.
4. Let $\mathrm{f}(\mathrm{x})=\frac{9^{x}}{9^{x}+3}$ then find the value of the sum $f\left(\frac{1}{2008}\right)+f\left(\frac{2}{2008}\right)+f\left(\frac{3}{2008}\right)+\ldots \ldots . . f\left(\frac{2007}{2008}\right)$
5. Examine whether the following functions are even or odd or neither even nor odd, where [ ] denotes greatest integer function.
(i) $\quad \mathrm{f}(\mathrm{x})=\frac{\left(1+2^{\mathrm{x}}\right)^{7}}{2^{\mathrm{x}}}$
(ii) $f(x)=\frac{\sec x+x^{2}-9}{x \sin x}$
(iii) $\mathrm{f}(\mathrm{x})=\sqrt{1+\mathrm{x}+\mathrm{x}^{2}}-\sqrt{1-\mathrm{x}+\mathrm{x}^{2}}$
(iv) $\quad f(x)=\left\{\begin{array}{cc}x|x|, & x \leq-1 \\ {[1+x]+[1-x],} & -1<x<1 \\ -x|x|, & x \geq 1\end{array}\right.$
(v) $f(x)=\frac{2 x(\sin x+\tan x)}{2\left[\frac{x+2 \pi}{\pi}\right]-3}$

## Exercise \# 5 Part \# I \$ [Previous Year Questions] [AIEEE/JDe-MAIN]

1. Which of the following is not a periodic function-
[AIEEE 2002]
(1) $\sin 2 x+\cos x$
(2) $\cos \sqrt{\mathrm{x}}$
(3) $\tan 4 x$
(4) $\log \cos 2 x$
2. The period of $\sin ^{2} \mathrm{x}$ is-
[AIEEE 2002]
(1) $\pi / 2$
(2) $\pi$
(3) $3 \pi / 2$
(4) $2 \pi$
3. The function $f: R \rightarrow R$ defined by $f(x)=\sin x$ is-
[AIEEE 2002]
(1) into
(2) onto
(3) one-one
(4) many-one
4. The range of the function $\mathrm{f}(\mathrm{x})=\frac{2+x}{2-x}, \mathrm{x} \neq 2$ is-
[AIEEE 2002]
(1) R
(2) $\mathrm{R}-\{-1\}$
(3) $\mathrm{R}-\{1\}$
(4) $R-\{2\}$
5. The domain of $\sin ^{-1}\left[\log _{3}\left(\frac{x}{3}\right)\right]$
[AIEEE 2002]
(1) $[1,9]$
(2) $[-1,9]$
(3) $[-9,1]$
(4) $[-9,-1]$
6. The function $\mathrm{f}(\mathrm{x})=\log \left(\mathrm{x}+\sqrt{x^{2}+1}\right)$, is-
[AIEEE 2003]
(1) neither an even nor an odd function
(2) an even function
(3) an odd function
(4) a periodic function
7. Domain of definition of the function $f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$, is-
[AIEEE 2003]
(1) $(-1,0) \cup(1,2) \cup(2, \infty)$
(2) $(1,2)$
(3) $(-1,0) \cup(1,2)$
(4) $(1,2) \cup(2, \infty)$
8. If $f: R \rightarrow R$ satisfies $f(x+y)=f(x)+f(y)$, for all $x, y \in R$ and $f(1)=7$, then $\sum_{r=1}^{n} f(r)$ is
[AIEEE 2003]
(1) $\frac{7 n(n+1)}{2}$
(2) $\frac{7 n}{2}$
(3) $\frac{7(n+1)}{2}$
(4) $7 \mathrm{n}(\mathrm{n}+1)$
9. A function ffrom the set of natural numbers to integers defined by $f(n)=\left\{\begin{array}{l}\frac{n-1}{2}, \text { when } n \text { is odd } \\ -\frac{n}{2}, \text { when } n \text { is even }\end{array}\right.$ is -
[AIEEE 2003]
(1) neither one-one nor onto
(2) one-one but not onto
(3) onto but not one-one
(4) one-one and onto both

## MOCK TVEST

## SECTION - I : STRAIGHT OBJECTIVE TYPE

1. If $f(x) \cdot f(y)=f(x)+f(y)+f(x y)-2 \quad \forall x, y \in R$ and if $f(x)$ is not a constant function, then the value of $f(1)$ is equal to
(A) 1
(B) 2
(C) 0
(D) -1
2. The domain of the function $f(x)=\sqrt{-\log _{\frac{x+4}{}}\left(\log _{2} \frac{2 x-1}{3+x}\right)}$ is
(A) $(-4,-3) \cup(4, \infty)$
(B) $(-\infty,-3) \cup(4, \infty)$
(C) $(-\infty,-4) \cup(3, \infty)$
(D) None
3. Let $f(x)=a x^{2}+b x+c$, where $a, b, c$ are rational and $f: Z \rightarrow Z$, where $Z$ is the set of integers. Then $a+$ $b$ is :
(A) a negative integer
(B) an integer
(C) non-integral rational number
(D) none of these
4. If $f(x)=\frac{\sin ^{2} x+4 \sin x+5}{2 \sin ^{2} x+8 \sin x+8}$, then range of $f(x)$ is
(A) $\left(\frac{1}{2}, \infty\right)$
(B) $\left(\frac{5}{9}, 1\right)$
(C) $\left[\frac{5}{9}, 1\right]$
(D) $\left[\frac{5}{9}, \infty\right)$
5. If $f(x)=x+\tan x$ and $g(x)$ is the inverse of $f(x)$ then $g^{\prime}(x)$ is equal to
(A) $\frac{1}{1+(g(x)-x)^{2}}$
(B) $\frac{1}{2+(g(x)-x)^{2}}$
(C) $\frac{1}{2+(g(x)-x)^{2}}$
(D) none of these
6. Let $f(x)=\tan x, g(f(x))=f\left(x-\frac{\pi}{4}\right)$, where $f(x)$ and $g(x)$ are real valued functions. For all possible values of $x, f(g(x))=$
(A) $\tan \left(\frac{x-1}{x+1}\right)$
(B) $\tan (x-1)-\tan (x+1)$
(C) $\frac{f(x)+1}{f(x)-1}$
(D) $\frac{x-\pi / 4}{x+\pi / 4}$
7. The range of the function $f(x)=\sin ^{-1}\left[x^{2}+\frac{1}{2}\right]+\cos ^{-1}\left[x^{2}-\frac{1}{2}\right]$, where [] is the greatest integer function, is:
(A) $\left\{\frac{\pi}{2}, \pi\right\}$
(B) $\left\{0, \frac{\pi}{2}\right\}$
(C) $\{\pi\}$
(D) $\left(0, \frac{\pi}{2}\right)$

## $11^{\text {th }}$ Class Modules Chapter Details



| PHYSICS | CHEMISTRY | MATHEMATICS |
| :---: | :---: | :---: |
| Module-1 | Module-1(PC) | Module-1 |
| 1. Physical World and Units | 1. Mole Concept | 1. Basic Maths and Logarithm |
| \& Dimensions | 2. Atomic Structure | 2. Quadratic Equation |
| 2. Basic Maths \& Vector | 3. Chemical Bonding | 3. Sequence and Series |

3. Kinematics

## Module-2

1. Newton's Law of Motion \& Friction
2. Work, Energy \& Power

## Module-3

1. Centre of Mass \& Collisions
2. Rotational Motion
3. Gravitation

## Module-4

1. Mechanical Properties of Matter
2. Thermal Properties of Matter

## Module-5

1. Simple Harmonic Motion
2. Wave Motion
3. Measurement Error \& Experiment
4. Chemical Bonding
5. Gaseous State

Module-2(PC)

1. Thermodynamics
2. Thermochemistry
3. Chemical Equilibrium
4. Ionic Equilibrium

Module-3(IC)

1. Periodic Table \& Its Properties
2. Redox Reaction \& Equivalent Concepts
3. Hydrogen \& Its Components
4. S-Block

Module-4(OC)

1. Nomenclature of Organic Compounds
2. Isomerism
3. General Organic Chemistry

Module-5(OC)

1. Reaction Mechanism
2. Hydrocarbon
3. Aromatic Hydrocarbon
4. Environmental Chemistry
5. Sequence and Series

## Module-2

1. Trigonometric Ratio and Identities
2. Trigonometric Equation
3. Properties \& Solution of Triangle

## Module-3

1. Permutation \& Combination
2. Binomial Theorum
3. Complex Number

Module-4

1. Straight Line
2. Circle
3. Conic Section
(Parabola,Ellipse \& Hyperbola)

## Module-5

1. Mathematical Induction
2. Mathematical Reasoning
3. Statistics

# $12^{\text {th }}$ Class Modules Chapter Details 



| PHYSICS | CHEMISTRY |  |
| :--- | :--- | :--- |
| Module-1 | Module-1(PC) | MATHEMATICS |

1. Electrostatics
2. Capacitance

## Module-2

1. Current Electricity
2. Magnetic Effect of Current and Magnetism

## Module-3

1. Electromagnetic Induction
2. Alternating Current

## Module-4

1. Geometrical Optics
2. Wave Optics

## Module-5

1. Modern Physics
2. Nuclear Physics
3. Solids \& Semiconductor Devices
4. Electromagnetic Waves
5. Principle of Communication
6. Solid State
7. Solutions and Colligative Properties
8. Electro Chemistry

Module-2(PC)

1. Chemical Kinetics and Nuclear Chemistry
2. Surface Chemistry

Module-3(IC)

1. Metallurgy
2. P- Block
3. Transition Elements (d \& f block)
4. Co-ordination Compound
5. Salt Analysis \& Qualitative Analysis

Module-4(OC)

1. Alkyl Halides \& Aryl Halides
2. Alcohol, Phenol \& Ether
3. Carbonyl Compound

Module-5(OC)

1. Carboxylic Acid \& Their Derivatives
2. Biomolecules \& Polymers
3. Chemistry in Everyday Life

## Module-1

1. Sets \& Relation
2. Function
3. Inverse Trigonometric Function
4. Probability

## Module-2

1. Limit
2. Continuity
3. Differentiability
4. Method of Differentiation

## Module-3

1. Indefinite Integration
2. Definite Integration
3. Area Under the Curve

## Module-4

1. Application of Derivative
2. Matrix
3. Determinant

## Module-5

1. Differential Equation
2. Vector \& 3-Dimensional
