This PDF is the Sample PDF taken from our Comprehensive Study Material for NEET & AIIMS

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

ETOOS Comprehensive Study Material For NEET & AIIMS

CHAPTER

REDOX REACTION

The meeting of two personalities is like the contact of two chemical substances; if there is any reaction, both are transformed

"CARL JUNG"

INTRODUCTION

number of phenomena, both phtysical as well as biological, are concerned with redox reaction. These reactions find extensive use in pharmaceutical, biological, industrial, metallurgical and agricultural areas. The importance of these reactions is apparent from the fact that burning of different types of fuels for obtaining energy for domestic, transport and other commercial purposes, electrochemical processes for extraction of highly reactive metals and non-metals, manufacturing of chemical compounds like caustic soda, operation of dry and wet batteries and corrosion of metals fall within the purview of redox processes. Of late, environmental issues like Hydrogen Economy (use of liquid hydrogen as fuel) and development of 'Ozone Hole' have started figuring under redox phenomenon.

Oxidation State as a periodic property :

Oxidation state of an atom depends upon the electronic configuration of an atom i.e. why it is periodic properties.

- (a) I A group of alkali metals show +1 oxidation state.
- (b) II A group or alkaline earth metals show +2 oxidation state
- (c) The maximum normal oxidation state, show by III A group elements is +3. These elements also show +2 to +1 oxidation states also.
- (d) Elements of IV A group show their maximum and minimum oxidation states +4 and -4 respectively.
- (e) Non metals shows number of oxidation states, the relation between maximum and minimum oxidation states for non metals is equal to (maximum oxidation state minimum oxidation state = 8).

For example sulphur has maximum oxidation number +6 as being in VIA group element.

Paradox of fractional oxidation number :

Fractional oxidation number is the average of oxidation state of all atoms of element under examination and the structural parameters reveal that the atoms of element for whom fractional oxidation state is realised a actually present in different oxidation states. Structure of the species C_3O_2 , Br_3O_8 and $S_4O_6^{2-}$ reveal the following bonding situations :

The element marked with asterisk (*) in each species is exhibiting different oxidation number from rest of the atoms of the same element in each of the species. This reveals that in C_3O_2 , two carbon atoms are present in +2 oxidation state each whereas the third one is present in zero oxidation state and the average is +4/3. However, the realistic picture is +2 for two terminal carbons and zero for the middle carbon.

$$O = C^{+2} = C^{*} = C^{*} = C^{+2} = O$$

Structure of C₃O₂
(Carbon suboxide)

etoosindia.com

Oxidation :

- (i) Addition of Oxygen
- (ii) Removal of Hydrogen
- (iii) Addition of Electronegative element
- (iv) Removal of Electropositive element
- (v) Increment in oxidation state of Electropositive element
- (vi) increase in (+) ve valency or decrease in (-) ve valency of a substance takes place called oxidation.

Reduction :

- (i) Removal of Oxygen :
- (ii) Addition of Hydrogen
- (iii) Removal of Electronegative element
- (iv) Addition of Electropositive element
- (v) Decrement in oxidation state of Electropositive element
- (vi) decrease in (+) ve valency or increase in (-) ve valency of a substance is called reduction.

Oxidising agent (oxidant) and reducing agent (Reductant)

Oxidising agent or Oxidant

Oxidising agents are those compounds which can oxidise others and reduce itself during the chemical reaction. Those reagents in which for an element, oxidation number decreases or which undergoes gain of electrons in a redox reaction are termed as oxidants.

Reducing agent or Reductant

Reducing agents are those compounds which can reduce other and oxidise itself during the chemical reaction. Those reagents in which for an element, oxidation number increases or which undergoes loss of electrons in a redox reaction are termed as reductants.

Ex. KI, Na₂S₂O₃ etc are the powerful reducing agents.

Oxidation number change method :-(method of balancing redox equation)

This method was given by Jonson. In a balanced redox reaction, total increase in oxidation number must be equal to total decreases in oxidation number. This equivalence provides the basis for balancing redox reactions.

The general procedure involves the following steps :-

- (i) Select the atom in oxidising agent whose oxidation number decreases and indicate the gain of electrons.
- (ii) Select the atom in reducing agent whose oxidation number increases and write the loss of electrons.
- (iii) Now cross multiply i.e. multiply oxidising agent by the number of loss of electrons and reducing agent by number of gain of electrons.
- (iv) Balance the number of atoms on both sides whose oxidation numbers change in the reaction.
- (v) In order to balance oxygen atoms, add H_2O molecules to the side deficient in oxygen. Then balance the number of H atoms by adding H⁺ ions in the hydrogen.

etoosindia.com

SOLVED EXAMPLE

- **Ex.** 1 The weight of sodium bromate required to prepare Ex. 4 55.5 mL of 0.672 N solution for cell reaction, $BrO_3^- + 6H^+ + 6e^- \longrightarrow Br^- + 3H_2O$, is (A) 1.56 g **(B)** 0.9386 g (C) 1.23 g (D) 1.32 g Sol. Meq. of NaBrO₃ = $55.5 \times 0.672 = 37.296$ Sol. Let weight of NaBrO, = W $\therefore \frac{W}{M_{\text{NaBrO}_3}} \times 6 \times 1000 = 37.296 \text{ (equivalent weight} =$ M/6) of n-factor = 6 $\therefore \frac{M}{151} \times 6 \times 1000 = 37.296$ $\therefore W = 0.9386 g$ Hence, (B) is the correct answer. **Ex. 2** NaIO₃ reacts with NaHSO₃ according to equation $IO_3^- + 3HSO_3^- \longrightarrow I^- + 3H^+ + 3SO_4^2$ The weight of NaHSO, required to react with 100 mL of solution containing 0.68 g of NaIO₃ is Ex. 5 **(B)** 0.2143 g (A) 5.2 g (C) 2.3 g (D) none of the above Meq. of NaHSO₃ = Meq. of NaIO₃ = N × V = $\frac{0.68}{1.08}$ × Sol. $6 \times 1000 (I^{5+} + 6e^{-} \rightarrow I^{-})$ Sol. $\therefore \frac{W_{\text{NaHSO}_3}}{M_{\text{NaHSO}_3}} \times 2 \times 1000 = \frac{0.68}{198} \times 6 \times 100$ $W_{_{NaHSO_{3}}} = \frac{0.68 \times 6 \times 100 \times 104}{198 \times 1000} = 0.2143$ **Ex.** 6 Hence (B) is the correct answer. **Ex.3** If 0.5 moles of BaCl, is mixed with 0.1 moles of Na_3PO_4 , the maximum amount of $Ba_3(PO_4)_2$ that can Sol. be formed is (A) 0.7 mol (B) 0.5 mol (C) 0.2 mol (D) 0.05 mol Let us first solve this problem by writing the Sol. complete balanced reaction. $3BaCl_2 + 2Na_3PO_4 \longrightarrow Ba_3(PO_4)_2 \downarrow + 6NaCl$ We can see that the moles of $\mathrm{BaCl}_{\mathrm{2}}$ used are Ex. 7 times the moles of Na₃PO₄. Therefore, to react with 0.1 mol of Na₃PO₄, the moles of BaCl₂ required would be $0.1 \times \frac{5}{2} = 0.15$. Since BaCl₂ is 0.5 mol, we can Sol. conclude that Na_3PO_4 is the limiting reagent. Therefore, moles of Ba₃(PO₄)₂ formed is $0.1 \times \frac{3}{2}$ $= 0.05 \, \text{mol.}$ Hence, (D) is the correct answer. etoosindia.com
 - A 0.1097 g sample of As, O, required 36.10 mL of KMnO₄ solution for its fitration. The molarity of $KMnO_{4}$ solution is. (A) 0.02**(B)** 0.04 (C) 0.0122 **(D)**0.3 n-factor = 5 $2AsO_{4}^{3-} + Mn^{2}$ $As_2O_3 + MnO_4$ n-factor = 4Let, molarity of KMnO₄ solution be M \therefore Eq. of As₂O₃ = Eq. of KMnO₄ solution $\frac{0.1097}{198} \times 4 = \frac{36.10 \times M \times 5}{1000}$ (Equivalent weight $As_2O_3 = \frac{198}{4}$) Molarity=0.0122 M

Hence, (C) is the correct answer.

In basic medium, CrO_4^{2-} oxidize $\text{S}_2\text{O}_3^{2-}$ to form SO_4^{2-} and itself changes to $\text{Cr}(\text{OH})_4^{-}$. How many mL of $0.154 \text{ M CrO}_2^{2^2}$ are required to react with 40 mL of $0.246 \text{ M S}_2\text{O}_3^{2^4}$? (B) 156.4 mL $(A) 200 \,\mathrm{mL}$ (D) 190.4 mL (C) 170.4 mL $40 \times 0.246 \times 8 = V \times 0.154 \times 3$ (Meq. of S₂O₂²⁻= Meq. of CrO_{4}^{2-}) :. $V = 170.4 \, mL$ Hence, (\mathbb{C}) is the correct answer. $10 \,\mathrm{mL}\,\mathrm{of}\,0.4 \,\mathrm{MAl}_2(\mathrm{SO}_4)_2$ is mixed with $20 \,\mathrm{mL}\,\mathrm{of}\,0.6 \,\mathrm{M}$ BaCl₂. Concentration of Al³⁺ ion in the solution will be. (A) 0.266 M **(B)** 10.3 M (C) 0.1 M (D) 0.25 M $Al_2(SO_4)_3 + BaCl_2 \longrightarrow BaSO_4 \downarrow + AlCl_3$ Initial Meq. $10 \times 0.4 \times 6$ $20 \times 0.6 \times 2$ 0 0 = 24 = 24 Final Meq. 0 0 24 24 $[Al^{3+}] = \frac{24}{30 \times 3} = 0.266 \text{ M}$ Hence (A) is the correct answer. 0.52 g of a dibasic acid required 100 mL of 0.2 N NaOH for complete neutralization. The equivalent weight of acid is (A) 26 **(B)** 52 (D) 156 (C) 104 Meq. of Acid = Meq. of NaOH $\frac{0.52}{E} \times 1000 = 100 \times 0.2$ $\therefore E = 26$ Hence (A) is the correct answer.

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

PHYSICS FOR NEET & AIIMS

	Exercise # 1	SINGLE OBJ	ECTI	VE NE	EET LEVEL
1.	H_2O_2 reduces MnO_4^- (A) Mn^+ (C) Mn^{3+}	ion to (B) Mn ²⁺ (D) Mn ⁻	10.	H_2S reacts with halogo (A) Form sulphur halio (C) Are reduced	ens, the halogens des (B) Are oxidised (D) None of these
2.	 When a sulphur atom becomes a sulphide ion (A) There is no change in the composition of atom (B) It gains two electrons (C) The mass number changes (D) None of these 		11.	Equation $H_2S + H_2O_2$ (A) Acidic nature of H (B) Basic nature of H_2 (C) Oxidising nature of (D) Reducing nature of	\rightarrow S+2H ₂ O represents $_{2}O_{2}$ $_{2}O_{2}$ $_{3}fH_{2}O_{2}$ $_{4}fH_{2}O_{2}$
3.	The ultimate product hydrogen and carbon (A) H_2O alone (C) H_2O and CO_2	ts of oxidation of most of in food stuffs are (B) CO_2 alone (D) None of these	12.	In the reaction $C_2O_4^{2-} + MnO_4^{-} + H^+ - H^ H^-$	$\rightarrow Mn^{2+} + CO_2 + H_2O$ (B) MnO ⁻
4.	When P reacts with ca PH ₃ and NaH ₂ PO ₂ . Thi (A) Oxidation (B) Reduction (C) Oxidation and reduced	austic soda, the products are is reaction is an example of uction (Redox)	13.	 (C) Mn²⁺ A reducing agent is a (A) Accept electron (C) Accept protons 	 (D) H⁺ substance which can (B) Donate electrons (D) Donate protons
5.	Which one of the foll by bromine water (A) Fe^{2+} to Fe^{3+}	(B) Cu ⁺ to Cu ²⁺	14.	Which of the follow oxidizing agent (A) F ₂ (C) Br ₂	(B) Cl_2 (D) I_2
6.	(C) Mn^{2+} to MnO_4^- In the reaction $H_2S + N$ (A) Oxidised	(D) Sn^{3+} to Sn^{+4} NO ₂ \rightarrow H ₂ O + NO + S. H ₂ S is (B) Reduced	15.	or the four oxyacids oxidising agent in dilu (A) HClO_4 (C) HClO_2	(D) HOCl
7.	 (C) Precipitated The conversion of Pb (A) Oxidation (B) Reduction (C) Neither oxidation in 	(D) None of these O_2 to Pb(NO ₃) ₂ is nor reduction	16.	Identify the correct sta (A) It acts as reducing (B) It acts as both oxid (C) It is neither an oxid (D) It acts as oxidising	atement about H_2O_2 agent only lising and reducing agent diser nor reducer g agent only
8.	 (D) Both oxidation and reduction In the course of a chemical reaction an oxidant (A) Loses electrons (B) Gains electrons (C) Both loses and gains electron 		17.	 Several blocks of magnesium are fixed to the bottom of a ship to (A) Keep away the sharks (B) Make the ship lighter (C) Prevent action of water and salt (D) Prevent puncturing by under-sea rocks 	
9.	(D) Electron change ta $2CuI \rightarrow Cu + CuI_2$, th (A) Redox (C) Oxidation	the reaction is (B) Neutralisation (D) Reduction	18.	Which of the followin and reducing agents (A) H_2SO_4 (C) H_2S	g behaves as both oxidising (B) SO ₂ (D) HNO ₃

etoosindia.com

India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

REDOX REACTIONS

Exercise # 2 SINGLE OBJECTIVE AIIMS LEVEI One mole of N₂H₄ loses 10 mol of electrons to form a 1. In which of the following acid, which acid has 8. oxidation reduction and complex formation new compound Y. Assuming that all nitrogen appear in the new compound, what is the oxidation state of properties N₂ in Y? (There is no change in the oxidation state (A) HNO, (\mathbf{B}) H₂SO₄ of hydrogen) (C)HCl (D) HNO (A) + 3**(B)** - 3 The compound which could not act both as oxidising 2. (C) - 1 (D) + 5as well as reducing agent is 9. An element A in a compound ABD has oxidation (A) SO (\mathbf{B}) MnO₂ number A^{n-} . It is oxidised by $Cr_2 O_7^{2-}$ in acid medium. (\mathbb{C}) Al₂O₂ (D)CrO In the experiment 1.68×10^{-3} moles of K₂Cr₂O₂ were Of all the three common mineral acids, only sulphuric 3. used for 3.26×10^{-3} moles of ABD. The new oxidation acid is found to be suitable for making the solution number of A after oxidation is acidic because (A) 3 **(B)** 3 - n(A) It does not react with KMnO₄ or the reducing (\mathbb{C}) n -3(D)+nagent 10. The incorrect order of decreasing oxidation number (B) Hydrochloric acid reacts with $KMnO_{4}$ of S in compounds is :-(C) Nitric acid is an oxidising agent which reacts (A) $H_2S_2O_2 > Na_2S_4O_6 > Na_2S_2O_2 > S_8$ with reducing agent **(B)** $H_{2}\tilde{SO}_{5} > H_{2}\tilde{SO}_{3} > SCl_{2} > H_{2}\tilde{S}$ (D) All of the above are correct (C) $SO_3 > SO_2 > H_2S > S_8$ (D) $H_2SO_4 > SO_2 > H_2S > H_2S > H_2S_0_8$ 4. For H_3PO_3 and H_3PO_4 the correct choice is (A) H₃PO₃ is dibasic and reducing 11. In which of the following reaction is there a change (B) H₂PO₂ is dibasic and non-reducing in the oxidation number of nitrogen atoms :-(C) H_3PO_4 is tribasic and reducing $(A) 2 NO_2 \rightarrow N_2O_2$ (D) H_2PO_2 is tribasic and non-reducing (B) $NH_3 + H_2O \rightarrow NH_4^+$ $+ OH^{-}$ (\mathbb{C}) N₂O₅+H₂O \rightarrow 2HNO₃ 5. Match List I with List II and select the correct answer (D) none using the codes given below the lists List I (Compound) List II (Oxidation state of N) 12. For the redox reaction : $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$ (A) NO (1) + 5(B) HNO (2) - 3the correct stoichiometric coefficients of MnO₄, (3)+4(C) NH, $C_2O_4^{2-}$ and H^+ are respectively $(D) N_{2}O_{5}$ (4) + 1(A) 2,5,16 **(B)** 16,5,2 Codes : $(\mathbb{C})5,16,2$ (D)2.16.5 (A) A B С D **(B)** A В С D A certain weight of pure CaCO, is made to react 13. 3 3 1 4 2 4 1 2 completely with 200 mL of an HCl solution to give (C) A В С D (D) A В С D 224 mL of CO₂ gas at STP. The normality of the HCl 3 4 2 1 2 3 4 1 is :-M³⁺ ion loses 3e⁻. Its oxidation number will be 6. (A) 0.05 N **(B)** 0.1 N (A)0 (B) + 3(C) 1.0 N (D) 0.2 N (C) + 6(D) - 314. The volume of 1.5 MH₂PO₄ solution required to 7. Oxidation number of oxygen in potassium super neutralize exactly 90 mL of a 0.5 M Ba (OH), solution oxide (KO₂) is is :-(A) - 2**(B)** - 1 $(\mathbf{A}) 10 \,\mathrm{mL}$ $(\mathbf{B})30\,\mathrm{mL}$ (D) 60 mL (C) 20 mL $(\mathbb{C}) - 1/2$ (D) - 1/4

etoosindia.com

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

I. Column-I Column-II (A) Molarity (p) Dependent on temperature (B) Molality (q) $\frac{M_A \times n_A}{n_A M_A + n_B M_B} \times 100$ (C) Mole fraction (r) Independent of temperature (D) Mass % (s) $\frac{X_A}{X_B M_B} \times 1000$ Where M_A , M_B are molar masses, n_A , n_B are no of moles & X_A , X_B are mole fractions of solute and solvent respectively. 2. Column-I (A) 100 ml of 0.2 MAICl ₂ solution + 400 ml (p) Total concentration of cation(s) = 0.12 M of 0.1 M HCl solution (B) 50 ml of 0.4 MKCl + 50 ml H ₂ O (r) [SO ₄ ²] = 0.06 M (C) 30 ml of 0.2 M K ₂ SO ₄ + 70 ml H ₂ O (r) [SO ₄ ²] = 0.25 M (b) 200 ml 24.5% (wiy) H ₂ SO ₄ (s) [CT] = 0.2 M 3. Column-I Column-II (A) 41 g H ₂ SO ₃ (r) Central atom is in its highest oxidation number (b) 53 g Na ₂ CO ₃ (s) May react with an oxidising agent 4. Column-I Column-II (A) Sn ² + HonO ₄ (acidic) (q) Amount of oxidant available decides the number 3.5 mole 1.2 mole of electrons transfer (B) H ₂ CO ₄ + HonO ₄ (acidic) (q) Amount of reductant available decides the number 3.5 mole 3.6 mole (c) Number o		Exercise # 3 PART -	1 MATRIX MATCH COLUMN
(A) Molarity (p) Dependent on temperature (B) Molality (c) Mole fraction (c) mode fraction (c) mode fraction (c) Mole fractic) Mole frac	1.	Column-I	Column-II
(B) Molality (q) $\frac{M_A \times n_A}{n_A M_A + n_B M_B} \times 100$ (C) Mole fraction (r) Independent of temperature (D) Mass % (s) $\frac{X_A}{X_B M_B} \times 1000$ Where M_A , M_B are molar masses, n_A , n_B are no of moles & X_A , X_B are mole fractions of solute and solvent respectively. 2. Column-I (A) 100 ml of 0.2 M AlCl ₃ solution + 400 ml (p) Total concentration of cation(s) = 0.12 M of 0.1 M HCl solution (B) 50 ml of 0.4 M KCl + 50 ml H ₂ O (q) [SO ₄ ²] = 0.6 M (C) 30 ml of 0.2 M K ₅ SO ₄ + 70 ml H ₂ O (r) [SO ₄ ²] = 0.6 M (C) 30 ml of 0.2 M K ₅ SO ₄ + 70 ml H ₂ O (r) [SO ₄ ²] = 0.2 M 3. Column-I Column-II (A) 14 g H ₅ SO ₃ (r) (p) 200 mL of 0.5 N base is used for complete neutralization (B) 4.9 g H ₂ PO ₄ (q) (200 millimoles of oxygen atoms (C) 4.5 g oxalic acid (H ₂ C ₂ O ₄) (r) Central atom is in its highest oxidation number (D) 5.3 g Na ₂ CO ₃ (s) May react with an oxidising agent 4. Column-I Column-II (A) Sn ⁻² + MnO ₄ (acidic) (p) Amount of oxidant available decides the number 3.5 mole 1.2 mole of electrons transfer (B) H ₂ C ₂ O ₄ + MnO ₄ (acidic) (q) Amount of oxidant available decides the number 5.5 mole 1.2 mole of electrons transfer (C) S ₂ O ₃ ⁻² + 1 ₂ (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant > Number of electrons involved per mole of reductant (b) Fe ⁺² + Cr ₂ O ₇ - ² (acidic) (c) (c) (c) (c) (c) (c) (c) (c) (c) ((A) Molarity	(p) Dependent on temperature
(C) Mole fraction(r) Independent of temperature(D) Mass %(s) $\frac{X_A}{X_BM_B} \times 1000$ Where M_A , M_B are molar masses, n_A , n_B are no of moles & X_A , X_B are mole fractions of solute and solvent respectively.2.Column-I(A) 100 ml of 0.2 M AlCl ₃ solution + 400 ml(p) Total concentration of cation(s) = 0.12 M of 0.1 M HCl solution(B) 50 ml of 0.4 M KCl + 50 ml H ₂ O(p) Total concentration of cation(s) = 0.12 M of 0.1 M HCl solution(B) 50 ml of 0.2 M K ₂ SO ₄ + 70 ml H ₂ O(p) Total concentration of cation(s) = 0.12 M of 0.1 M HCl solution(B) 40 g H ₂ PO ₄ (p) 200 ml 24.5% (w/v) H ₂ SO ₄ (b) 200 ml 24.5% (w/v) H ₂ SO ₄ (s) $[C\Gamma] = 0.2 M$ 3.Column-I(A) 41 g H ₂ SO ₃ (p) 200 mL of 0.5 N base is used for complete neutralization (B) 4.9 g H ₂ PO ₄ (c) 4.5 g oxalic acid (H ₂ C ₂ O ₄)(r) Catural atom is in its highest oxidation number(f) 5.3 g Na ₂ CO ₃ (s) May react with an oxidising agent4.Column-IColumn-II(A) S n ⁺² + MnO ₄ (acidic)(p) Amount of oxidant available decides the number3.5 mole 1.2 moleof electrons transfer(C) S ₂ O ₃ ⁻² + 1 ₂ (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant > Number of electrons involved per mole of reductant(D) Fe ⁺² + Cr ₂ O ₇ ⁻² (acidic)(s) Number of electrons involved per mole of reductant(a) 2 mole 1.6 mole(a) Number of electrons involved per mole of reductant		(B) Molality	(q) $\frac{M_A \times n_A}{n_A M_A + n_B M_B} x \ 100$
(b) Mass % (c) M		(C) Mole fraction	(r) Independent of temperature
Where M_A , M_B are molar masses, n_A , n_B are no of moles & X_A , X_B are mole fractions of solute and solvent respectively.2.Column-IColumn-II(A) 100 ml of 0.2 MAICl ₃ solution + 400 ml (C) 30 ml of 0.4 M KCl + 50 ml H ₂ O (D) 200 ml 24.5% (w/v) H ₂ SO ₄ (p) Total concentration of cation(s) = 0.12 M of 0.1 M HCl solution(B) 50 ml of 0.4 M KCl + 50 ml H ₂ O (D) 200 ml 24.5% (w/v) H ₂ SO ₄ (q) $[SO_4^{-2}] = 0.6 M$ (s) $[CT] = 0.2 M$ 3.Column-I (A) 4.1 g H ₃ SO ₃ (C) 4.5 g oxalicacid (H ₂ C ₂ O ₄) (D) 5.3 g Na ₂ CO ₃ (p) 200 mL of 0.5 N base is used for complete neutralization (q) 200 millimoles of oxygen atoms (r) Central atom is in its highest oxidation number (b) 5.3 g Na ₂ CO ₃ (p) 200 mL of 0.5 N base is used for complete neutralization (q) 200 millimoles of oxygen atoms (r) Central atom is in its highest oxidation number (g) 5.3 g Na ₂ CO ₃ (p) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 200 mL of 0.5 N base is used for complete neutralization (g) 4 mount of oxidant available decides the		(D) Mass %	(s) $\frac{X_A}{X_B M_B} \times 1000$
2.Column-IColumn-II(A) 100 ml of 0.2 M AlCl ₃ solution + 400 ml(p) Total concentration of cation(s) = 0.12 M of 0.1 M HCl solution(B) 50 ml of 0.4 M KCl + 50 ml H ₂ O(c) 30 ml of 0.2 M K ₂ SO ₄ + 70 ml H ₂ O(D) 200 ml 24.5% (w/v) H ₂ SO ₄ (q) $[SQ_4^2]=0.06 M$ (r) SO 20 ml 24.5% (w/v) H ₂ SO ₄ (s) $[CT]=0.2 M$ 3.Column-I(A) 4.1 g H ₂ SO ₃ (p) 200 ml cf 0.5 N base is used for complete neutralization(Q) 4.5 g oxalic acid (H ₂ C ₂ O ₄)(p) 200 ml limoles of oxygen atoms(C) 4.5 g oxalic acid (H ₂ C ₂ O ₄)(r) Central atom is in its highest oxidation number(A) Sn ⁺² + MnO ₄ ⁻ (acidic)(b) H ₂ C ₂ O ₄ + MnO ₄ ⁻ (acidic)3.5 mole1.2 mole(B) H ₂ C ₂ O ₄ + MnO ₄ ⁻ (acidic)(p) Amount of oxidant available decides the number of electrons transfer(B) H ₂ C ₂ O ₅ + 1 ₂ (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant (b) Fe ⁺² + Cr ₂ O ₇ ⁻² (acidic)9.2 mole1.6 mole		Where M_A , M_B are molar masses, n_A , n_B are respectively.	re no of moles & $X_{_{\rm A}}$, $X_{_{\rm B}}$ are mole fractions of solute and solvent
(A) 100 ml of 0.2 M AlCl3 solution + 400 ml(p) Total concentration of cation(s) = 0.12 M of 0.1 M HCl solution(B) 50 ml of 0.4 M KCl + 50 ml H20 (C) 30 ml of 0.2 M K2SO4 + 70 ml H20 (D) 200 ml 24.5% (w/v) H2SO4(q) $[SO_4^2-]=0.06 M$ (r) $[SO_4^2^2]=2.5 M$ (s) $[Cl^2]=0.2 M$ 3.Column-1 (A) 4.1 g H2SO3 (C) 4.5 g oxalic acid (H2C2O4) (D) 5.3 g Na2CO3(p) 200 mL of 0.5 N base is used for complete neutralization (q) 200 millimoles of oxygen atoms (r) Central atom is in its highest oxidation number (s) May react with an oxidising agent4.Column-1(A) Sn ⁺² + MnO ₄ (acidic) 3.5 mole 1.2 mole (B) H2C2O4 + MnO4 (acidic) 8.4 mole 3.6 mole (D) Fe ⁺² + Cr2O7 ⁻² (acidic) 9.2 mole 1.6 mole(p) Total concentration of cation(s) = 0.12 M of 0.1 M HCl solution (q) [SO4 ²⁻] = 0.06 M (r) [SO4 ²⁻] = 0.2 M4.Column-1(p) 200 mL of 0.5 N base is used for complete neutralization (q) 200 millimoles of oxygen atoms (r) Central atom is in its highest oxidation number of electrons transfer(g) Amount of oxidant available decides the number of electrons transfer(h) Fe ⁺² + Cr2O7 ⁻² (acidic) 9.2 mole 1.6 mole	2.	Column-I	Column-II
(B) 50 ml of 0.4 M KCl + 50 ml H_Q(q) $[SO_4^2]=0.06 M$ (C) 30 ml of 0.2 M K_2SO_4 + 70 ml H_QO(r) $[SO_4^2]=0.06 M$ (D) 200 ml 24.5% (w/v) H_2SO_4(r) $[SO_4^2]=2.5 M$ (A) 4.1 g H_2SO_3(s) $[CI^-]=0.2 M$ (A) 4.1 g H_2SO_3(p) 200 mL of 0.5 N base is used for complete neutralization(B) 4.9 g H_3PO_4(p) 200 mL of 0.5 N base is used for complete neutralization(G) 5.3 g Na_2CO_3(r) Central atom is in its highest oxidation number(h) 5.3 g Na_2CO_3(r) Central atom is in its highest oxidation number(a) Sn*2 + MnO_4^- (acidic)(r) Amount of oxidant available decides the number3.5 mole1.2 mole(B) H_2C_2O_4 + MnO_4^- (acidic)(p) Amount of oxidant available decides the number8.4 mole3.6 mole(C) S_2O_3^{-2} + 1_2(r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant <>br/>Number of electrons involved per mole of oxidant <>br/>Number of electrons involved per mole of oxidant < Number of electrons involved per mole of oxidant < Number of electrons involved per mole of oxidant < Number of electrons involved per mole of oxidant		(A) 100 ml of 0.2 M AlCl ₃ solution + 400 ml	(p) Total concentration of cation(s) = 0.12 M of 0.1 M HCl solution
(C) 30 ml of 0.2 M K ₂ SO ₄ + 70 ml H ₂ O (D) 200 ml 24.5% (w/v) H ₂ SO ₄ 3. Column-I (A) 4.1 g H ₂ SO ₃ (B) 4.9 g H ₃ PO ₄ (C) 4.5 g oxalic acid (H ₂ C ₂ O ₄) (D) 5.3 g Na ₂ CO ₃ 4. Column-I (A) Sn ⁺² + MnO ₄ ⁻ (acidic) 3.5 mole 1.2 mole (B) H ₂ C ₂ O ₄ + MnO ₄ ⁻ (acidic) 8.4 mole 3.6 mole (C) S ₂ O ₃ ⁻² + I ₂ 7.2 mole 3.6 mole (D) Fe ⁺² + Cr ₂ O ₇ ⁻² (acidic) 9.2 mole 1.6 mole (r) [SO ₄ ²⁻]=2.5 M (s) [CГ]= 0.2 M (s) [CΓ]= 0.2 M (c) 200 mL of 0.5 N base is used for complete neutralization (q) 200 millimoles of oxygen atoms (r) Central atom is in its highest oxidation number (g) Amount of oxidant available decides the number of electrons transfer (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant (s) Number of electrons involved per mole of reductant (s) Number of electrons involved per mole of reductant.		(B) 50 ml of 0.4 M KCl + 50 ml H_2O	(q) $[SO_4^{2}] = 0.06 \mathrm{M}$
(b) 200 ml 24.5% (w/v) H_2SO_4 3. Column-I (A) 4.1 g H_2SO_3 (B) 4.9 g H_3PO_4 (C) 4.5 g oxalic acid ($H_2C_2O_4$) (D) 5.3 g Na_2CO_3 4. Column-I (A) $Sn^{+2} + MnO_4^-$ (acidic) 3.5 mole 1.2 mole (B) $H_2C_2O_4 + MnO_4^-$ (acidic) 8.4 mole 3.6 mole (C) $S_2O_3^{-2} + I_2$ 7.2 mole 3.6 mole (D) $Fe^{+2} + Cr_2O_7^{-2}$ (acidic) 9.2 mole 1.6 mole (e) De^{-1} (and the set of the s		(C) 30 ml of $0.2 \text{ M K}_2 \text{SO}_4 + 70 \text{ ml H}_2 \text{O}$	(r) $[SO_4^{2-}] = 2.5 \text{ M}$
3.Column-IColumn-I(A) $4.1 g H_2 SO_3$ (B) $4.9 g H_3 PO_4$ (C) $4.5 g coxalic acid (H_2 C_2 O_4)$ (D) $5.3 g Na_2 CO_3$ (p) 200 mL of 0.5 N base is used for complete neutralization (q) 200 millimoles of oxygen atoms (r) Central atom is in its highest oxidation number (s) May react with an oxidising agent4.Column-IColumn-I(A) $Sn^{+2} + MnO_4^-$ (acidic) $3.5 mole 1.2 mole$ (B) $H_2 C_2 O_4 + MnO_4^-$ (acidic) $8.4 mole 3.6 mole$ (p) Amount of oxidant available decides the number of electrons transfer (q) Amount of reductant available decides the number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant >Number of electrons involved per mole of reductant (s) Number of electrons involved per mole of reductant (s) Number of electrons involved per mole of reductant (s) Number of electrons involved per mole of reductant		(D) 200 ml 24.5% (w/v) H_2SO_4	$(s) [Cl^{-}] = 0.2 M$
(A) $4.1 \text{ g } \text{H}_2\text{SO}_3$ (B) $4.9 \text{ g } \text{H}_3\text{PO}_4$ (C) $4.5 \text{ g oxalic acid } (\text{H}_2\text{C}_2\text{O}_4)$ (D) $5.3 \text{ g } \text{Na}_2\text{CO}_3$ (p) $200 \text{ mL of } 0.5 \text{ N base is used for complete neutralization } (q) 200 \text{ millimoles of oxygen atoms}(r) Central atom is in its highest oxidation number (3.5 \text{ mole} - 1.2 \text{ mole})4.Column-IColumn-II(A) \text{Sn}^{+2} + \text{MnO}_4^- (acidic)3.5 \text{ mole} - 1.2 \text{ mole}(p) Amount of oxidant available decides the number of electrons transfer(B) \text{H}_2\text{C}_2\text{O}_4 + \text{MnO}_4^- (acidic)8.4 \text{ mole} - 3.6 \text{ mole}(q) Amount of reductant available decides the number of electrons transfer(C) \text{S}_2\text{O}_3^{-2} + \text{I}_27.2 \text{ mole} - 3.6 \text{ mole}(r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of reductant (s) Number of electrons involved per mole of reductant (b) \text{Fe}^{+2} + \text{Cr}_2\text{O}_7^{-2} (acidic)9.2 \text{ mole} - 1.6 \text{ mole}(r) Number of electrons involved per mole of reductant.$	3.	Column-I	Column-II
(B) $4.9 \text{ g} \text{ H}_3\text{PO}_4$ (q) 200 millimoles of oxygen atoms(C) $4.5 \text{ g oxalic acid } (\text{H}_2\text{C}_2\text{O}_4)$ (r) Central atom is in its highest oxidation number(b) $5.3 \text{ g Na}_2\text{CO}_3$ (r) Central atom is in its highest oxidation number(a) $\text{Sn}^{+2} + \text{MnO}_4^-$ (acidic)(b) $\text{May react with an oxidising agent}$ (c) $\text{Sn}^{+2} + \text{MnO}_4^-$ (acidic)(c) Amount of oxidant available decides the number 3.5 mole 1.2 mole (B) $\text{H}_2\text{C}_2\text{O}_4 + \text{MnO}_4^-$ (acidic)(c) Amount of reductant available decides the number 8.4 mole 3.6 mole (C) $\text{S}_2\text{O}_3^{-2} + \text{I}_2$ (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant Number of electrons involved per mole of oxidant Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant Number of electrons involved per mole of reductant (s) Number of electrons involved per mole of reductant (s) Number of electrons involved per mole of reductant Number of electrons involved per mole of reductant 		(A) 4.1 g $H_2 SO_3$	(p) 200 mL of 0.5 N base is used for complete neutralization
(C) $4.5 \text{ g oxalic acid } (\text{H}_2\text{C}_2\text{O}_4)$ (D) $5.3 \text{ g Na}_2\text{CO}_3$ (r) Central atom is in its highest oxidation number (s) May react with an oxidising agent4.Column-IColumn-II(A) $\text{Sn}^{+2} + \text{MnO}_4^-$ (acidic) 3.5 mole (p) Amount of oxidant available decides the number of electrons transfer(B) $\text{H}_2\text{C}_2\text{O}_4 + \text{MnO}_4^-$ (acidic) 8.4 mole (q) Amount of reductant available decides the number of electrons transfer(C) $\text{S}_2\text{O}_3^{-2} + \text{I}_2$ 7.2 mole (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of oxidant 8.4 mole (D) $\text{Fe}^{+2} + \text{Cr}_2\text{O}_7^{-2}$ (acidic) 9.2 mole (a) for electrons involved per mole of oxidant 8.4 mole (b) $\text{Fe}^{+2} + \text{Cr}_2\text{O}_7^{-2}$ (acidic) 9.2 mole (b) $\text{Re}^{+2} + \text{Cr}_2\text{O}_7^{-2}$ (acidic) 9.2 mole (c) $\text{Mouthouse of electrons involved per mole of reductant.(c) Number of electrons involved per mole of reductant4.4 \text{ mole}(c) \text{Mouthouse of electrons involved per mole of reductant}(c) Number of electrons involved per mole of reductant4.4 \text{ mole}(b) \text{Re}^{+2} + \text{Cr}_2\text{O}_7^{-2} (acidic)9.2 \text{ mole}(c) \text{Re}^{+2} + \text{Cr}_2\text{O}_7^{-2} (acidic)4.4 \text{ mole}(c) Mouthouse of electrons involved per mole of reductant.(c) Number of electrons involved per mole of reductant.$		(B) $4.9 \text{ g H}_3\text{PO}_4$	(q) 200 millimoles of oxygen atoms
(b) $5.3 \text{ g Na}_2 \text{CO}_3$ (s) May react with an oxidising agent 4. Column-I (A) $\text{Sn}^{+2} + \text{MnO}_4^-(\text{acidic})$ 3.5 mole 1.2 mole (B) $\text{H}_2\text{C}_2\text{O}_4 + \text{MnO}_4^-(\text{acidic})$ 8.4 mole 3.6 mole (C) $\text{S}_2\text{O}_3^{-2} + \text{I}_2$ 7.2 mole 3.6 mole (D) $\text{Fe}^{+2} + \text{Cr}_2\text{O}_7^{-2}(\text{acidic})$ 9.2 mole 1.6 mole (s) May react with an oxidising agent Column-II (p) Amount of oxidant available decides the number of electrons transfer (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of reductant (s) Number of electrons involved per mole of oxidant < Number of electrons involved per mole of reductant (s) Number of electrons involved per mole of reductant.		(C) 4.5 g oxalic acid ($H_2C_2O_4$)	(r) Central atom is in its highest oxidation number
4.Column-IColumn-II $(A) Sn^{+2} + MnO_4^-$ (acidic) 3.5 mole 1.2 mole 3.5 mole 1.2 mole $(p) \text{ Amount of oxidant available decides the numberof electrons transfer(B) H_2C_2O_4 + MnO_4^- (acidic)8.4 \text{ mole}3.6 \text{ mole}(C) S_2O_3^{-2} + I_2(q) \text{ Amount of reductant available decides the numberof electrons transfer(C) S_2O_3^{-2} + I_2(r) \text{ Number of electrons involved per mole of oxidant >Number of electrons involved per mole of reductant(D) Fe^{+2} + Cr_2O_7^{-2} (acidic)(s) Number of electrons involved per mole of oxidant< Number of electrons involved per mole of reductant(s) \text{ Number of electrons involved per mole of reductant.$		(D) $5.3 \text{ g Na}_2 \text{CO}_3$	(s) May react with an oxidising agent
(A) $Sn^{+2} + MnO_4^{-}(acidic)$ (p) Amount of oxidant available decides the number3.5 mole1.2 moleof electrons transfer(B) $H_2C_2O_4 + MnO_4^{-}(acidic)$ (q) Amount of reductant available decides the number8.4 mole3.6 moleof electrons transfer(C) $S_2O_3^{-2} + I_2$ (r) Number of electrons involved per mole of oxidant >7.2 mole3.6 moleNumber of electrons involved per mole of reductant(D) $Fe^{+2} + Cr_2O_7^{-2}(acidic)$ (s) Number of electrons involved per mole of reductant.9.2 mole1.6 mole< Number of electrons involved per mole of reductant.	4.	Column-I	Column-II
3.5 mole1.2 moleof electrons transfer(B) $H_2C_2O_4 + MnO_4^-$ (acidic)of electrons transfer8.4 mole3.6 moleof electrons transfer(C) $S_2O_3^{-2} + I_2$ (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of reductant(D) $Fe^{+2} + Cr_2O_7^{-2}$ (acidic)Number of electrons involved per mole of oxidant9.2 mole1.6 moleNumber of electrons involved per mole of reductant.		(A) $Sn^{+2} + MnO_4^{-}$ (acidic)	(p) Amount of oxidant available decides the number
(B) $H_2C_2O_4 + MnO_4^-$ (acidic)(q) Amount of reductant available decides the number8.4 mole3.6 moleof electrons transfer(C) $S_2O_3^{-2} + I_2$ (r) Number of electrons involved per mole of oxidant >7.2 mole3.6 moleNumber of electrons involved per mole of reductant(D) $Fe^{+2} + Cr_2O_7^{-2}$ (acidic)(s) Number of electrons involved per mole of oxidant9.2 mole1.6 moleNumber of electrons involved per mole of reductant.		3.5 mole 1.2 mole	of electrons transfer
8.4 mole3.6 moleof electrons transfer(C) $S_2O_3^{-2} + I_2$ (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of reductant(D) $Fe^{+2} + Cr_2O_7^{-2}$ (acidic)(s) Number of electrons involved per mole of oxidant < Number of electrons involved per mole of reductant.9.2 mole1.6 mole		(B) $H_2C_2O_4 + MnO_4^-$ (acidic)	(q) Amount of reductant available decides the number
(C) $S_2O_3^{-2} + I_2$ (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of reductant(D) $Fe^{+2} + Cr_2O_7^{-2}$ (acidic)(s) Number of electrons involved per mole of oxidant 		8.4 mole 3.6 mole	of electrons transfer
7.2 mole3.6 moleNumber of electrons involved per mole of reductant(D) $Fe^{+2} + Cr_2O_7^{-2}$ (acidic)Number of electrons involved per mole of oxidant9.2 mole1.6 moleNumber of electrons involved per mole of reductant.		(C) $S_2 O_3^{-2} + I_2$	(r) Number of electrons involved per mole of oxidant >
(b) $Fe^{r_2} + Cr_2O_7^{-2}$ (acidic) 9.2 mole 1.6 mole (s) Number of electrons involved per mole of oxidant < Number of electrons involved per mole of reductant.		7.2 mole 3.6 mole	Number of electrons involved per mole of reductant
		(D) $\operatorname{Fe}^{12} + \operatorname{Cr}_{2}\operatorname{O}_{7}^{-2}$ (acidic)	(\$) Number of electrons involved per mole of oxidant
		9.2 more 1.0 more	 Number of electrons involved per mole of reductant.

etoosindia.com

REDOX REACTIONS

	Exercise # 4 PART - 1		PREVIOUS YEAR (NEET/AIPMT)	
1.	The number of moles of $KMnO_4$ that will be needed to react with one mole of sulphite ion in acidic solution [AIPMT (Prelims)-2007]		In which of the following compounds, nitroger exhibits highest oxidation state ? [AIPMT (Prelims) –2012	
	(A) 1 (B) $\frac{3}{5}$		$\begin{array}{ll} (A) N_{3}H & (B) NH_{2}OH \\ (C) N_{2}H_{4} & (D) NH_{3} \end{array}$	
2.	(C) $\frac{4}{5}$ (D) $\frac{2}{5}$ Oxidations numbers of P in PO ₄ ³⁻ , of S in SO ₄ ²⁻ and that of Cr in Cr ₂ O ₄ ²⁻ are respectively	7. d	(a) $H_2O_2 + O_3 \rightarrow H_2O + 2O_2$ [AIPMT - 2014] (b) $H_2O_2 + Ag_2O \rightarrow 2Ag + H_2O + O_2$ Role of hydrogen peroxide in the above reactions is respectively	
	[AIPMT (Prelims)-2009](A) +3, +6 and +5 (B) +5, +3 and +6 (C) -3, +6 and +6 (D) +5, +6 and +6)]	 (A) Oxidizing in (a) and reducing in (b) (B) Reducing in (a) and oxidising in (b) (C) Reducing in (a) and (b) (D) Oxidizing in (a) and (b) 	
3.	Oxidation states of P in $H_4P_2O_5$, $H_4P_2O_6$, $H_4P_2O_7$ are respectively(A) +3, +5, +4(B) +5, +3, +4(C) +5, +4, +3(D) +3, +4, +5	re)] 8.	 (D) Oxidising in (a) and (b) Which of the following processes does not involve oxidation of iron ? [AIPMT - 2015] (A) Liberation of H. from steam by iron at high 	
4.	How much amount of $CuSO_4.5H_2O$ required for liberation of 2.54 g I ₂ when titrated with KI [AIIMS-2011 (A) 2.5 gm (B) 4.99 gm	or []	 temperature (B) Rusting of iron sheets (C) Decolourization of blue CuSO₄ solution by iron 	
	(C) 2.4 gm (D) 1.2 gm		(D) Formation of $Fe(CO)_5$ from Fe	
5.	A solution contains Fe^{2+} , Fe^{3+} and I^- ions. This solution was treated with iodine at 35°C. E° for Fe^{3+} / Fe^{2+} is 0.77 V and E° for $I_2/2I^- = 0.536$ V. The favourable redox reaction is		Assuming complete ionization, same moles of which of the following compounds will require the least amount of acidified $KMnO_4$ for complete oxidation ? [Re -AIPMT - 2015]	
	 [AIPMT (Mains)-2011 (A) I⁻ will be oxidised to I₂ (B) Fe²⁺ will be oxidised to Fe³⁺ (C) I₂ will be reduced to I⁻ 	[]	(A) FeC_2O_4 (B) $\operatorname{Fe}(\operatorname{NO}_2)_2$ (C) FeSO_4 (D) FeSO_3	

etoosindia.com

PHYSICS FOR NEET & AIIMS

			MOCK	TEST		
1.	Amongst the following identify the species with an atom in + 6 oxidation state					
	(A) MnO_4^-	(B) Cr(C	$N)_{6}^{3-}$	(C) Ni F_6^{2-}	(D) $\operatorname{CrO}_2\operatorname{Cl}_2$	
2.	In which of the follo	owing compounds	s, is the oxidation	n number of iodine is	fractional	
	(A) IF ₃	(B) IF ₂		(C) I_{3}^{-}	(D) IF ₇	
3.	The compound YE rare earth element Y (A) 3/7	B a ₂ Cu ₃ O ₇ which s Yttrium is in its us (B) 7/3	hows supercond ual +3 oxidation	luctivity has copper in a state (C) 3	n oxidation state Assume that the (D) 7	
4.	The oxidation num $(A) 0 + 1$ and -2	ber of sulphur in $(\mathbf{B}) + 2 + 2$	S_8, S_2F_2, H_2S res	pectively, are (C) $0 + 1$ and $+ 2$	(D) $-2 + 1$ and -2	
5.	Which one of the fo	ollowing reactions	is not an examr	ble of redox reaction	(D) 2, 1 und 2	
	(A) $Cl_2 + 2H_2O + SO_2 \rightarrow 4H^+ + SO^{4-} + 2Cl^-$ (B) $Cu^{++} + 7n \rightarrow 7n^{++} + Cu$					
	$(\mathbb{C}) \ 2\mathrm{H}_2 + \mathrm{O}_2 \rightarrow 2\mathrm{I}$	H ₂ O		(b) $HCl + H_2O \rightarrow H_3O^- + Cl^-$		
6.	For the reactions ($C + O_{1} \rightarrow CO_{2} \wedge M$	I = -393I			
0.	$2 \operatorname{Zn} + \Omega_{2} \rightarrow 2 \operatorname{Zn}$	O: AH = -412I	1 - 5755			
	(A) Carbon can oxidise Zn (C) Oxidation of Zn is not feasible			(B) Oxidation of carbon is not feasible(D) Zn can oxidise carbon		
7.	In the reaction B_2H	$H_6 + 2KOH + 2X -$	$\rightarrow 2Y + 6H_2, X$	and Y are respectively	y	
	$(\mathbf{A})\mathbf{H}_2,\mathbf{H}_3\mathbf{BO}_3$	(B) HCl, k	CBO3	$(\mathbb{C})\mathrm{H_2O},\mathrm{KBO_3}$	$(\mathbf{D})\mathrm{H_2O},\mathrm{KBO_2}$	
8.	In a balanced equat	tion $H_2SO_4 + x H$	$I \rightarrow H_2 S + y I_2 +$	$z H_2 O$, the values of	x, y, z are	
0	(A) x = 3, y = 5, z = 2	$(\mathbf{B}) \mathbf{x} = 4, $	y=8, z=5	$(\mathbb{C}) x = 8, y = 4, z = 4$	(D) $x = 5, y = 3, z = 4$	
9.	Which of the follow	wing can act as an	acid and as a ba	ase	(\mathbf{D}) All of these	
	(A) $HClO_3$	(B) H ₂ PC) ₄	(C) HS	(D) All of these	
10.	MnO_4^{2-} (1 mole) in neutral aqueous medium is disproportionate to					
	(A) 2/3 mole of MnO_4^- and 1/3 mole of MnO_2^- (C) 1/3 mole of Mn_2O_7 and 1/3 mole of MnO_2^-		of MnO ₂ of MnO ₂	(B) $1/3$ mole of MnO_4^- and $2/3$ mole of MnO_2^- (D) $2/3$ mole of Mn_2O_7 and $1/3$ mole of MnO_2^-		
11.	The conductivity of a saturated solution of $BaSO_4$ is 3.06×10^{-6} ohm ⁻¹ cm ⁻¹ and its equivalent conductance is					
	$1.53 \text{ohm}^{-1} \text{cm}^{-1} \text{eq}^{-1}$ (A) 4×10^{-12}	uivalent ⁻¹ . The K (B) 2.5×1	$_{\rm sp}$ of the BaSO ₄ v 10^{-9}	will be (C) 2.5×10^{-13}	(D) 4×10^{-6}	
12.	When MnO_2 is fuse (A) K_2MnO_4 , purp (C) Mn_2O_3 , brown	ed with KOH, a co ble green	oloured compound	nd is formed, the prod (B) KMnO ₄ , purple (D) Mn ₃ O ₄ black	luct and its colour is	
13.	In the following reaction,					
	$3Br_{2} + 6CO_{3}^{2-} + 3H_{2}O = 5Br^{-} + BrO_{3}^{-} + 6HCO_{3}$ (A) Bromine is oxidised and carbonate is reduced (C) Bromine is neither reduced nor oxidised ((B) Bromine is reduced and water is oxidised(D) Bromine is both reduced and oxidised		

etoosindia.com

11th Class Modules Chapter Details

PHYSICS

CHEMISTRY

Module-1

- 1. Physical World & Measurements
- 2. Basic Maths & Vector
- 3. Kinematics

Module-2

- 1. Law of Motion & Friction
- 2. Work, Energy & Power

Module-3

- **1.** Motion of system of
- particles & Rigid Body
- 2. Gravitation

Module-4

- 1. Mechanical Properties of Matter
- 2. Thermal Properties of Matter

Module-5

- 1. Oscillations
- 2. Waves

Module-1(PC)

- 1. Some Basic Conceps of Chemistry
- 2. Atomic Structure
- 3. Chemical Equilibrium
- **4.** Ionic Equilibrium

Module-2(PC)

- 1. Thermodynamics & Thermochemistry
- 2. Redox Reaction
- **3.** States Of Matter (Gaseous & Liquid)

Module-3(IC)

- 1. Periodic Table
- 2. Chemical Bonding
- 3. Hydrogen & Its Compounds
- 4. S-Block

Module-4(OC)

- 1. Nomenclature of
- Organic Compounds
- 2. Isomerism
- 3. General Organic Chemistry

Module-5(OC)

- 1. Reaction Mechanism
- 2. Hydrocarbon
- **3.** Aromatic Hydrocarbon
- 4. Environmental Chemistry & Analysis Of Organic Compounds

BIOLOGY

Module-1

- 1. Diversity in the Living World
- 2. Plant Kingdom
- 3. Animal Kingdom

Module-2

- 1. Morphology in Flowering Plants
- **2.** Anatomy of Flowering Plants
- **3.** Structural Organization in Animals

Module-3

- 1. Cell: The Unit of Life
- 2. Biomolecules
- 3. Cell Cycle & Cell Division
- 4. Transport in Plants
- 5. Mineral Nutrition

Module-4

- 1. Photosynthesis in Higher Plants
- 2. Respiration in Plants
- 3. Plant Growth and Development
- 4. Digestion & Absorption
- 5. Breathing & Exchange of Gases

Module-5

- Body Fluids & Its Circulation
 Excretory Products & Their Elimination
- **3.** Locomotion & Its Movement
- 4. Neural Control & Coordination
- **5.** Chemical Coordination and Integration

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

12th Class Modules Chapter Details

PHYSICS

Module-1

- 1. Electrostatics
- 2. Capacitance

Module-2

- 1. Current Electricity
- 2. Magnetic Effect of Current and Magnetism

Module-3

- 1. Electromagnetic Induction
- 2. Alternating Current

Module-4

- 1. Geometrical Optics
- 2. Wave Optics

Module-5

- 1. Modern Physics
- 2. Nuclear Physics
- 3. Solids & Semiconductor Devices
- 4. Electromagnetic Waves

CHEMISTRY

Module-1(PC)

- 1. Solid State
- 2. Chemical Kinetics
- **3.** Solutions and Colligative Properties

Module-2(PC)

- 1. Electrochemistry
- 2. Surface Chemistry

Module-3(IC)

- 1. P-Block Elements
- 2. Transition Elements (d & f block)
- 3. Co-ordination Compound
- 4. Metallurgy

Module-4(OC)

- 1. HaloAlkanes & HaloArenes
- Alcohol, Phenol & Ether
 Aldehyde, Ketone &
- Carboxylic Acid

Module-5(OC)

- 1. Nitrogen & Its Derivatives
- 2. Biomolecules & Polymers
- 3. Chemistry in Everyday Life

BIOLOGY

Module-1

- 1. Reproduction in Organisms
- 2. Sexual Reproduction in
- Flowering Plants
- 3. Human Reproduction
- 4. Reproductive Health

Module-2

- **1.** Principles of Inheritance and Variation
- 2. Molecular Basis of Inheritance
- **3.** Evolution

Module-3

- 1. Human Health and Disease
- 2. Strategies for Enhancement in
- Food Production
- 3. Microbes in Human Welfare

Module-4

- **1.** Biotechnology: Principles and Processes
- 2. Biotechnology and Its
- Applications
- 3. Organisms and Populations

Module-5

- 1. Ecosystem
- 2. Biodiversity and Conservation
- 3. Environmental Issues

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do