This PDF is the Sample PDF taken from our Comprehensive Study Material for NEET & AIIMS

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

ETOOS Comprehensive Study Material For NEET & AIIMS

CHAPTER

SOME BASIC CONCEPTS OF CHEMISTRY

Consider Chemistry among the most useful of sciences, and big with future discoveries for the utility and safety of the human race

"THOMAS JEFFERSON"

INTRODUCTION

n this chapter we will study the basic concepts and techniques which will form the base of chemistry and will be useful in every chapter you are going to study. A you already know, chemistry is about the study of matter, so we will study the characteristics, classification and measurement of matter with international system of units and their inter conversions, and how to make precise and accurate scientific calculations. After this we will study about the laws of Chemical Combinations and Dalton's atomic theory and how to deal with calculations involving atoms, molecules, **moles and molar mass**. Also how to determine molecular formula and what is Emperical formula will be discussed in this chapter.

Classification of universe

The whole universe consists of matter and energy. In a chemical reaction niether any mass is destroyed nor any energy is lost. Energy can only be trnsformed from one form to another and that we will study in detail later in this chapter. So basically Universe is classified into 2 categoies as follows :

(I) Matter

- (II) Energy
- (I) Matter

The thing which occupy space and having mass which is feel by our five senses is called as **matter**. It is mainly subdivided on the basis of two kinds of classifications :

- (I) Physical classification
- (II) Chemical classification

Physical Classification :

We see different things around us having different shaped, sizes and colors, mass and occupy space, all these things are composed of matter. Depending upon physical and chemical properties matter is classified into following three ctaegories

- (a) Solid
- (b) Liquid
- (c) Gas
- (a) Solid

A substance is said to be solid if it possesses a definite volume and a definite shape. Constituent particles are tightly packed and usually there is a regu; lar pattern among the particles and they do not have much freedom to move or not easily compressible.

Ex. sugar, iron, gold, wood, NaCl etc.

(b) Liquid

A substance is said to be liquid if it possesses a definite volume but not definite shape. They take up the shape of the vessel in which they are put. The intermolecular distance is high as compared to solids and thus they have the tendancy to flow but they are not much compressible due to little free space but can flow easily.

Ex. water, milk, oil, mercury, alcohol, Bromine etc.

(c) Gas

A substance is said to be gas if it neither possesses a definite volume nor a definite shape. This is because they fill up the whole vessel in which they are put. The intermolecular distance is highest in gases and are highly compressible.

Ex. hydrogen(H_2), oxygen(O_2), carbon dioxide(CO_2), etc.

Solid, Liquid and Gaseous states of matter are inter convertible by changing temperature and pressure.

Solid
$$\xrightarrow{\text{Heat}}$$
 Liquid $\xrightarrow{\text{Heat}}$ Gas

For example, water can be converted into ice and water vapour as follows :

Ice
$$\xrightarrow{\text{Heat}}$$
 Water $\xrightarrow{\text{Heat}}$ Vapour

etoosindia.com

2

BASIC CONCEPT OF CHEMISTRY

ETOOS KEY POINTS

Direct conversion of solid to gaseous state is called as **sublimation**. Champhor undergoes sublimation. Also further on applying pressure at a particular temperature gases can be liquified, this principle is applied to compress natural gas and petroleum gas which are available for our uses as CNG and LPG.

Chemical Classification :

At the macroscopic level depending upon the composition, matter can also be divided into two broad categories :

- (a) Pure Substance
- (b) Mixture
- (a) Pure Substance

A material containing only one type of substance. They have fixed composition and their properties also do not vary. Pure Substance can not be separated into simpler substance by physical method.

Ex. Element	=	Na, Mg, Ca etc.
Compound	=	HCl, H ₂ O, CO ₂ , HNO ₃ etc.

- 2 Types
 - (i) Element
 - (ii) Compound
 - (i) Element : The pure substance containing only one kind of atoms .
- **3** Types (depend on physical and chemical property)
- Metal
- Non-metal
- Metalloids
- (ii) Compound

It is defined as pure substance containing more than one kind of atoms which are combined together in a fixed ratio by weight and which can be decomposed into simpler substance by the suitable chemical method. The properties of a compound are differnt from those of its components.

Ex. H₂O, HCl, HNO₃ etc.

2:16

1:8 by wt.

Compounds are further classified into two categories :

- Organic Compound
- Inorganic Compound
- (b) Mixture

A material which contain more than one type of substances and which is mixed any ratio by wt. i.e the components of a mixture have variable composition. The property of the mixture is the property of its components. The mixture can be separated by simple physical method. Depending upon the composition mixtures are of two types :

- (i) Homogeneous mixture
- (ii) Hetrogeneous mixture
- (i) Homogeneous Mixture

The mixture, in which all the components are present in uniform is called as homogeneous mixture.

Ex. Water + Salt, Water + Sugar, Water + alcohol, Air gasoline, brass etc.

etoosindia.com

BASIC CONCEPT OF CHEMISTRY

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

32

SOLVED EXAMPLE

- Ex.1 Show that in the reaction $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$, mass is conserved.
- Sol. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ moles before reaction 1 3 0 moles after reaction 0 0 2 Mass before reaction = mass of 1 mole $N_2(g)$ + mass of 3 mole $H_2(g)$ = 14 x 2 + 3 x 2 = 34 g mass after reaction = mass of 2 mole NH_3 = 2 x 17 = 34 g.
- **Ex.2** Find the density of $CO_2(g)$ with respect to $N_2O(g)$.

Sol. R.D. =
$$\frac{\text{M.wt.of CO}_2}{\text{M.wt.of N}_2\text{O}} = \frac{44}{44} = 1.$$

Ex.3 Find the vapour density of N_2O_5

Sol. V.D. =
$$\frac{\text{Mol. wt. of N}_2\text{O}_5}{2} = 54.$$

Ex. 4 Write a balance chemical equation for following reaction :
When ammonia (NH₃) decompose into nitrogen (N₂) gas & hydrogen (H₂) gas.

Sol.
$$\text{NH}_3 \to \frac{1}{2} \text{N}_2 + \frac{3}{2} \text{H}_2 \text{ or } 2\text{NH}_3 \to \text{N}_2 + 3\text{H}_2.$$

- Ex. 5 When 170 g NH_3 (M =17) decomposes how many grams of N, & H, is produced.
- Sol. $NH_3 \rightarrow \frac{1}{2}N_2 + \frac{3}{2}H_2$ $\frac{\text{moles of NH}_3}{\text{moles of NH}_3} = \frac{\text{moles of N}_2}{\text{moles of H}_2} = \frac{\text{moles of H}_2}{\text{moles of H}_2}$

So moles of N₂ = $\frac{1}{2} \times \frac{170}{17} = 5$. So wt. of N₂ = 5 × 28 = 140 g.

Similarly moles of H =
$$\frac{3}{2} \times \frac{170}{2}$$

Similarly moles of
$$H_2 = \frac{1}{2} \times \frac{1}{17} =$$

So wt. of $H_2 = 15 \times 2 = 30$ g.

Ex. 6 When x gram of a certain metal brunt in 1.5 g oxygen to give 3.0 g of its oxide. 1.20 g of the same metal heated in a steam gave 2.40 g of its oxide. shows the these result illustrate the law of constant or definite proportion

Sol. Wt. of metal =
$$3.0 - 1.5 = 1.5$$
 g

so wt. of metal : wt of oxygen = 1.5 : 1.5 = 1 : 1

similarly in second case,

wt. of oxygen = 2.4 - 1.2 = 1.2 g

so wt. of metal : wt of oxygen = 1.2 : 1.2 = 1 : 1

so these results illustrate the law of constant proportion.

Ex. 7 Find out % of O & H in H,O compound.

Sol. % of
$$O = \frac{16}{18} \times 100 = 88.89\%$$

% of H =
$$\frac{2}{18} \times 100 = 11.11\%$$

Ex.8 Acetylene & butene have empirical formula CH & CH₂ respectively. The molecular mass of acetylene and butene are 26 & 56 respectively deduce their molecular formula.
 Ans. C.H. & C.H.

$$n = \frac{\text{Molecular mass}}{\text{Empirical formula mass}}$$
For Acetylene :

Sol.

...

$$n = \frac{26}{13} = 2$$

$$\therefore \text{ Molecular formula} = C_2 H_2$$

For Butene :

$$n = \frac{56}{14} = 4$$

Molecular formula = C₄H₈

etoosindia.com

15.

	Exercise # 1 SINGLE OBJ	JECTIV	/E I	NEET LEVEL
1.	Which of the following pairs of substances illustrate the law of multiple proportions(A) CO and CO2(B) H_2O and D_2O (C) NaCl and NaBr(D) MgO and Mg(OH)2	9.	Which one of the for is not variable (A) Valency (C) Equivalent weight	(B) Atomic weight (D) All of these
2.	 1.0 g of an oxide of A contained 0.5 g of A. 4.0 g of another oxide of A contained 1.6 g of A. The data indicate the law of (A) Reciprocal proportions (B) Constant proportions (C) Conservation of energy (D) Multiple proportions 	10. 11.	The modern atomic (A) C^{12} (C) H^1 1 amu is equal to	c weight scale is based on (B) O ¹⁶ (D) C ¹³
3.	Among the following pairs of compounds, the one that illustrates the law of multiple proportions is(A) NH_3 and NCl_3 (B) H_2S and SO_2 (C) CuO and Cu ₂ O(D) CS_2 and $FeSO_4$	12.	(A) $\frac{1}{12}$ of C - 12 (C) 1g of H ₂ Sulphur forms the	(B) $\frac{1}{14}$ of O-16 (D) 1.66 × 10 ⁻²³ kg chlorides S ₂ Cl ₂ and SCl ₂ . The
4.	The percentage of copper and oxygen in samples of CuO obtained by different methods were found to be the same. This illustrates the law of (A) Constant proportions		equivalent mass of a (A) 8 g/mole (C) 64.8 g/mole	sulphur in SCl ₂ is (B) 16 g/mole (D) 32 g/mole
	(B) Conservation of mass(C) Multiple proportions(D) Reciprocal proportions	13.	The sulphate of a r This sulphate is iso The atomic weight	metal M contains 9.87% of M. pmorphous with $ZnSO_4.7H_2O$. of M is (B) 36.3
5.	 Two samples of lead oxide were separately reduced to metallic lead by heating in a current of hydrogen. The weight of lead from one oxide was half the weight of lead obtained from the other oxide. The data illustrates (A) Law of reciprocal proportions (B) Law of constant proportions (C) Law of multiple proportions (D) Law of equivalent proportions 	14.	(C) 24.3 When 100 ml of 1 M N H_2SO_4 solution at solution will be (A) Alkaline (C) Strongly acidic	(D) 11.3 1 NaOH solution and 10 ml of 10 re mixed together, the resulting (B) Acidic (D) Neutral
6.	 Chemical equation is balanced according to the law of (A) Multiple proportion (B) Reciprocal proportion (C) Conservation of mass (D) Definite proportions 	15.	In chemical scale, t mixture of oxygen a to be equal to (A) 16.002 (C) 17.00	he relative mass of the isotopic atoms (O ¹⁶ , O ¹⁷ , O ¹⁸) is assumed (B) 16.00 (D) 11.00
7.	 Avogadro number is (A) Number of atoms in one gram of element (B) Number of millilitres which one mole of a gaseous substances occupies at NTP (C) Number of molecules present in one gram molecular mass of a substance (D) All of these 		 (A) More than the theoretical weight (B) Less than the theoretical weight (C) Same as the theoretical weight (D) None of these 	
8.	 Which property of an element is always a whole number (A) Atomic weight (C) Atomic number (B) Equivalent weight (D) Atomic volume 	17.	1 mol of CH ₄ contains (A) 6.02×10^{23} atoms of H (B) 4 g atom of Hydrogen (C) 1.81×10^{23} molecules of CH ₄ (D) 3.0 g of carbon	

etoosindia.com

India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

SOME BASIC CONCEPT OF CHEMISTRY

Exercise # 2 SINGLE OBJECTIVE

1. Calculate the amount of Ni needed in the Mond's 8. process given below

 $Ni + 4CO \longrightarrow Ni(CO)_4$

If CO used in this process is obtained through a process, in which 6 g of carbon is mixed with 44 g $\rm CO_2$.

(A) 14.675 g	(B) 29 g
(C) 58 g	(D) 28 g

2. The mass of 70% H₂SO₄ required for neutralisation of 1 mol of NaOH.

(A) 49 gm	(B) 98 gm
(C) 70 gm	(D) 34.3 gm

3. In a certain operation 358 g of $TiCl_4$ is reacted with 96 g of Mg. Calculate % yield of Ti if 32 g of Ti is actually obtained [At. wt. Ti = 48, Mg = 24]

> [Hint: $\frac{358}{190} = 1.88$] (A) 35.38% (B) 66.6% (C) 100% (D) 60%

- 4. $0.5 \text{ mole of H}_2\text{SO}_4 \text{ is mixed with } 0.2 \text{ mole of Ca (OH)}_2$. The maximum number of moles of CaSO₄ formed is (A) 0.2 (B) 0.5(C) 0.4 (D) 1.5
- 5. Equal weight of 'X' (At. wt. = 36) and 'Y' (At. wt. = 24) are reacted to form the compound X_2Y_3 . Then :
 - (A) X is the limiting reagent
 - (B) Y is the limiting reagent
 - (C) No reactant is left over and mass of X_2Y_3 formed is double the mass of 'X' taken
 - (D) none of these
- 6. 25.4 g of iodine and 14.2g of chlorine are made to react completely to yield a mixture of ICl and ICl₃.
 Calculate the number of moles of ICl and ICl, formed.

(A) 0.1 mole, 0.1 mole	(B) 0.1 mole, 0.2 mole
(C) 0.5 mole, 0.5 mole	(D) 0.2 mole, 0.2 mole

7. What weights of P_4O_6 and P_4O_{10} will be produced by the combustion of 31g of P_4 in 32g of oxygen 13. leaving no P_4 and O_2 .

(A) 2.75g, 219.5g(B) 27.5g, 35.5g(C) 55g, 71g(D) 17.5g, 190.5g

produce the sufficient quantity of carbon dioxide to convert 21.2 kg of Na₂CO₃ completely in to NaHCO₃. [Atomic mass Na = 23, Ca = 40] CaCO₃ \longrightarrow CaO + CO₂

What weight of CaCO₃ must be decomposed to

AIIMS LEVEL

 $\begin{aligned} \text{Na}_2 \text{CO}_3 + \text{CO}_2 + \text{H}_2 \text{O} &\longrightarrow 2\text{Na}\text{HCO}_3 \\ \text{(A) 100 Kg} & \text{(B) 20 Kg} \\ \text{(C) 120 Kg} & \text{(D) 30 Kg} \end{aligned}$

9.

- NX is produced by the following step of reactions $M + X_2 \longrightarrow M X_2$; $3MX_2 + X_2 \longrightarrow$ M_3X_8 ; $M_3X_8 + N_2CO_3 \longrightarrow NX + CO_2 + M_3O_4$ How much M (metal) is consumed to produce 206 gm of NX. (Take at wt of M = 56, N=23, X = 80)
- (A) 42 gm (B) 56 gm (C) $\frac{14}{3}$ gm (D) $\frac{7}{4}$ gm
- 10. 0.05 mole of LiAlH₄ in ether solution was placed in a flask containing 74g (1 mole) of t-butyl alcohol. The product LiAlHC₁₂H₂₇O₃ weighed 12.7 g. If Li atoms are conserved, the percentage yield is : (Li = 7, Al = 27, H = 1, C = 12, O = 16). (A) 25% (B) 75% (C) 100% (D) 15%
- 11. A sample of a mixture of $CaCl_2$ and NaCl weighing 4.44 gm was treated to precipitate all the Ca as $CaCO_3$, which was then heated and quantitatively converted to 1.12g of CaO. (At. wt. Ca=40, Na=23, Cl=35.5) (A) Mixture contains 25% NaCl
 - (B) Mixture contains 60% CaCl,
 - (C) Mass of CaCl, is 2.22 g
 - (D) Mass of CaCl, 1.11 g

The oxidation states of Sulphur in the anions

$$\begin{split} &\text{SO}_3^{2-}, \text{S}_2\text{O}_4^{2-} \text{ and } \text{S}_2\text{O}_6^{2-} \text{ follow the order :} \\ &\text{(A) } \text{S}_2\text{O}_6^{2-} < \text{S}_2\text{O}_4^{2-} < \text{SO}_3^{2-} \\ &\text{(B) } \text{S}_2\text{O}_4^{2-} < \text{SO}_3^{2-} < \text{S}_2\text{O}_6^{2-} \\ &\text{(C) } \text{SO}_3^{2-} < \text{S}_2\text{O}_4^{2-} < \text{S}_2\text{O}_6^{2-} \\ &\text{(D) } \text{S}_2\text{O}_4^{2-} < \text{S}_2\text{O}_6^{2-} < \text{SO}_3^{2-} \end{split}$$

The oxidation number of Phosphorus in $Mg_2P_2O_7$ is :

(A) + 3(B) + 2(C) + 5(D) - 3

etoosindia.com

12.

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

1		
1.	$\begin{array}{c} \text{Column I} \\ \text{(A) 7} \\ \text{(A) + 2UCl(a) + 7} \\ (A) + U(b) + U($	Column II
	(A) $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(s) + H_2(g)$	(p) 50% of excess reagent left
	2 malas sach of Zn and UCL	
	2 mores each of Zin and HCI (D) $A = NO(a_2) + UCI(a_2) \rightarrow A = CI(a_2) + UNO(a_2)$	(a) 22 4 L of gog at STD is liberated
	(b) AgiNO ₃ (aq) + $\Pi Cl(aq) \rightarrow AgCl(s) + \Pi NO_3(g)$	(\mathbf{q}) 22.4 L of gas at STP is liberated
	170 g A gNO and $18.25 g HCl(A g = 108)$	
	$(\bigcirc C_3 \bigcirc C$	(r) 1 moles of solid (product) obtained
	100 g CaCO_{3} is decomposed]	(x) i moles of solid (product) obtained.
	(D) $2KClO_{3}(s) \rightarrow 2KCl(s) + 3O_{3}(g)$	(s) HCl is the limiting reagent
	2/3 moles of KClO ₃ decomposed	
2.	Column-I	Column-II
	(A) $100 \text{ ml of } 0.2 \text{ MAlCl}_3 \text{ solution} + 400 \text{ ml}$ of 0.1 MHCl solution	(p) Total concentration of cation(s) = 0.12 M
	(B) $50 \text{ ml of } 0.4 \text{ M KCl} + 50 \text{ ml H}_{2}\text{ O}$	(a) $[SO_{2}^{2}] = 0.06 \text{ M}$
	(C) $30 \text{ ml of } 0.2 \text{ M K}_2\text{SO}_4 + 70 \text{ ml H}_2\text{O}$	(r) $[SO_4^{2-}] = 2.5 \text{ M}$
	(D) $200 \text{ ml } 24.5\% \text{ (w/v) } \text{H}_2\text{SO}_4$	(s) $[Cl^-] = 0.2 M$
3.	Column-I	Column-II
	(A) Molarity	(p) Dependent on temperature
	(B) Molality	(q) $\frac{M_A \times n_A}{n_A M_A + n_B M_B} x \ 100$
	(C) Mole fraction	(r) Independent of temperature
		$\left(\right) \frac{X_{A}}{2}$ 1000
	(D) Mass %	(s) $X_B M_B \times 1000$
	Where M_A , M_B are molar masses, n_A , n_B are no respectively.	of moles & $X_{\rm _A}$, $X_{\rm _B}$ are mole fractions of solute and sol
4.	Column-I	Column-II
	(A) Law of conservation of mass	(p) CH ₄ has carbon and hydrogen in 3 : 1 mass ratio.
	(B) Law of multiple proportion	(q) 10 mL N_2 combines with 30 mL of H ₂ to f 20 mL of NH,
	(C) Law of definite proportion	(r) S and O ₂ combine to form SO ₂ and SO ₃
	(D) Law of reciprocal proportion	(s) In H_2S and SO_2 mass ratio of H and O w.r.t. sulphur
		is 1 : 16, hence in H_2O , mass ratio of H and O is 1 : 8.
	(E) Gay Lussac's Law	(t) 4.2 g MgCO ₃ gives 2.0 g residue on heating.
5.	Column-I	Column-II
		(mass of product)
	(A) $2H_2 + O_2 \longrightarrow 2H_2O$	(p) 1.028 g
	1g 1g	
	(B) $3H_2 + N_2 \longrightarrow 2NH_3$	(q) 1.333 g
	$(\mathbb{C}) \underset{H_2}{\overset{1g}{\text{H}_2} + \text{Cl}_2 \longrightarrow 2\text{HCl}} \rightarrow 2\text{HCl}$	(r) 1.125 g
	$\begin{array}{c} 1g 1g \\ (D) 2H + C \longrightarrow CH \end{array}$	(s) 1 214 g
	1g $1g$	(3) 1.217 5
	-	

India's No. 1 Online Coaching Institute IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

SOME BASIC CONCEPT OF CHEMISTRY

	Exercise # 4	PART - 1		PREVIOUS YEAR (1	NEET/AIPMT)
1.	Assuming fully decomposite released at STP on heati mass of $Ba = 137$) will be (A) 1.12 L (C) 2.24 L	osed, the volume of CO ₂ ng 9.85 g of BaCO ₃ (at. [CBSE AIPMT 2000] (B) 0.84 L (D) 4.96 L	9.	An element, X has a composition: ²⁰⁰ X : 90%, ¹⁹⁹ X : 8.0 % The weighted average at occurring element X is c	the following isotopic $6,^{202} X : 2.0\%$ pmic mass of the naturally losest to
2.	percentage of Se in peror is 0.5% by weight (at. weig molecular weight of pero is (A) 1.568×10^3 (C) 2.168×10^4	xidase anhydrase enzyme ght = 78.4), then minimum xidase anhydrase enzyme [CBSE AIPMT 2001] (B) 15.68 (D) 1 568 × 10 ⁴	10.	 (A) 201 u (C) 199 u The number of moles of I to react with one mole 	[CBSE AIMPT 2007] (B) 202 u (D) 200 u $KMnO_4$ that will be needed of sulphite ion in acidic
3.	Specific volume of cylindr 10-2 cc/g, whose radius a respectively. If $N_A = 6.02$ weight of virus. (A) 15.4 kg/mol (C) 3.08×10^4 kg/mol	tical virus particle is $6.02 \times$ nd length are 7Å and 10Å 23×10^{23} , find molecular [CBSE AIPMT 2001] (B) 1.54×10^4 kg/mol (D) 3.08×10^3 kg/mol	11.	solution is (A) 4/5 (C) 1 Number of moles of Mn0 mole of ferrous oxalate co will be	[CBSE AIPMT 2007] (B) $2/5$ (D) $3/5$ D_{4}^{-} required to oxidise one mpletely in acidic medium [CBSE AIPMT 2008]
4.	Which has maximum nur (A) 7 g N_2 (C) 16 g NO_2	nber of molecules ? [CBSE AIPMT 2002] (B) $2 g H_2$ (D) $16 g O_2$	12.	 (A) 0.6 mole (C) 7.5 moles How many moles of lead from a reaction between 	 (B) 0.4 mole (D) 0.2 mole (II) chloride will be formed 6 5 g of PbO and 3 2 g of
5.	In Haber process 30 L of dihydrogen and 30L of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the aforesaid condition in the end ? [CBSE AIPMT 2003] (A) 20 L ammonia, 10 L nitrogen, 30 L hydrogen (B) 20 L ammonia, 25 L nitrogen, 15 L hydrogen (C) 20 L ammonia, 20 L nitrogen, 20 L hydrogen		13.	HCl? (A) 0.044 (C) 0.011 What volume of oxygen and 1 atm, is needed t propane gas (C_3H_8) m- conditions ? (A) 7 L (C) 5 L	[CBSE AIPMT 2008] (B) 0.333 (D) 0.029 gas (O ₂) measured at 0°C o burn completely 1L of easured under the same [CBSE AIPMT 2008] (B) 6 L (D) 10 L
6.	The maximum number of (A) 15 L of H ₂ gas at STP (C) 0.5 g of H ₂ gas	Simple cules are present in [CBSE AIPMT 2004] (B) $5 L of N_2 gas at STP$ (D) $10 g of O_2 gas$	14.	Volume occupied by one = 1 g cm ⁻³) is (A) 9.0×10^{-23} cm ³ (C) 3.0×10^{-23} cm ³	molecule of water (density [CBSE AIPMT 2008] (B) $6.023 \times 10^{-23} \text{ cm}^3$ (D) $5.5 \times 10^{-23} \text{ cm}^3$
7.	The mass of carbon anode consumed (giving only carbon dioxide) in the production of 270 kg of aluminium metal from bausite by the Hall process is (at. mass of Al = 27) [CBSE AIPMT 2005] (A) 180 kg (B) 270 kg (C) 540 kg (D) 90 kg		15.	10 g of hydrogen and 64 g steel vessel and explo produced in this reaction (A) 2 moles (C) 4 moles	g of oxygen were filled in a oded. Amount of water will be [CBSE AIMPT 2009] (B) 3 moles (D) 1 mol
8.	The number of moles of mole of KI in alkaline mec (A) one fifth (C) one	KMnO ₄ reduced by one lium is [CBSE AIMPT 2005] (B) five (D) two	16.	The number of atoms in 0 (NA = $6.023 \times 10^{23} \text{ mol}^{-1}$) (A) 6.026×10^{22} (C) 3.600×10^{23}	1 mole of a triatomic gas is [CBSE AIPMT 2010] (B) 1.806×10^{23} (D) 1.800×10^{22}

etoosindia.com

Study with Best Etoos Faculties of Kota IIT-JEE | PRE-MEDICAL | CBSE | FOUNDATION

			MOCK	TEST		
1.	The charge on 1 gram ions of Al^{3+} is : ($N_A = Avogadro number$, $e = charge on one electron$)					
	(A) $\frac{1}{27}$ N _A e coulomb	(B) $\frac{1}{3} \times N_A$	ecoulomb	(C) $\frac{1}{9} \times N_A e$ coulomb	(D) $3 \times N_A e$ coulomb	
2.	The weight of a molecu (A) 1.09×10^{-21} g	ale of the composition $(\mathbf{B}) 1.24 \times 10^{-10}$	und $C_{60}H_{22}$ is : $0^{-21}g$	(C) 5.025×10^{-23} g	(D) 16.023 × 10 ⁻²³ g	
3.	16 g of an ideal gas SO (A) $x=3$	x occupies 5.6 L. (B) x=2	at STP. The va	alue of x is (C) $x=4$	(D) none	
4.	Calculate the molecula compound is 200. (Ator (A) Ca _{1,2} Br	tr formula of com mic wt. $Ca = 40$, I (B) $CaBr_{2}$	pound which $Br = 80$)	contains 20% Ca and 80 (C) CaBr	% Br (by wt.) if molecular weight of (D) Ca,Br	
5.	A compound possess 8 (A) 200	% sulphur by ma (B) 400	ass. The least	molecular mass is : (C) 155	(D) 355	
6.	 Equal weight of 'X' (At. wt. = 36) and 'Y' (At. wt. = 24) are reacted to form the compound X₂Y₃. Then : (A) X is the limiting reagent (B) Y is the limiting reagent (C) No reactant is left over and mass of X₂Y₃ formed is double the mass of 'X' taken (D) none of these 					
7.	The mass of 70% H_2SO (A) 49 gm	\mathbf{O}_4 required for ne (B) 98 gm	utralisation of	1 mol of NaOH. (C) 70 gm	(D) 34.3 gm	
8.	What weights of P_4O_6 a O_2 .	and P_4O_{10} will be	produced by th	the combustion of 31g of P (0) 55 a 71 a	$_4$ in 32g of oxygen leaving no P ₄ and	
9.	(A) 2.73g, 219.3g NX is produced by the	following step of	of reactions	(C) 33g, /1g	(b) 17.3g, 190.3g	
	$M + X_2 \longrightarrow M X_2$; $3MX_2 + X_2 \longrightarrow M_3X_8$; $M_3X_8 + N_2CO_3 \longrightarrow NX + CO_2 + M_3O_4$ How much M (metal) is consumed to produce 206 gm of NX. (Take at wt of M = 56, N=23, X = 80)					
	(A) 42 gm	(B) 56 gm		(C) $\frac{14}{3}$ gm	(D) $\frac{7}{4}$ gm	
10.	In FeCr ₂ O ₄ , the oxidati (A) + 2 and + 3	on numbers of F (B) 0 and +2	e and Cr are : 2	(\mathbb{C}) + 2 and + 6	(D) + 3 and + 6	
11.	The average oxidation (A) 2 and 3	state of Fe in Fe (B) 8/3	₃ O ₄ is :	(C)2	(D) 3	
12.	A solution of FeCl ₃ is $\frac{1}{3}$	$\frac{M}{30}$ its molarity for	or Cl ⁻ ion will	be :		
	(A) <u>M</u> 90	(B) <u>M</u> <u>30</u>		(C) <u>M</u> 10	(D) <u>M</u>	
13.	The molarity of Cl^{-} in a (A) 0.342	an aqueous soluti (B) 0.721	on which was	(w/V) 2% NaCl, 4% CaC (C) 1.12	I_2 and 6% NH ₄ Cl will be (D) 2.18	

etoosindia.com

11th Class Modules Chapter Details

PHYSICS

CHEMISTRY

Module-1

- 1. Physical World & Measurements
- 2. Basic Maths & Vector
- 3. Kinematics

Module-2

- 1. Law of Motion & Friction
- 2. Work, Energy & Power

Module-3

- **1.** Motion of system of
- particles & Rigid Body
- 2. Gravitation

Module-4

- 1. Mechanical Properties of Matter
- 2. Thermal Properties of Matter

Module-5

- 1. Oscillations
- 2. Waves

Module-1(PC)

- 1. Some Basic Conceps of Chemistry
- 2. Atomic Structure
- 3. Chemical Equilibrium
- **4.** Ionic Equilibrium

Module-2(PC)

- 1. Thermodynamics & Thermochemistry
- 2. Redox Reaction
- **3.** States Of Matter (Gaseous & Liquid)

Module-3(IC)

- 1. Periodic Table
- 2. Chemical Bonding
- 3. Hydrogen & Its Compounds
- 4. S-Block

Module-4(OC)

- 1. Nomenclature of
- Organic Compounds
- 2. Isomerism
- 3. General Organic Chemistry

Module-5(OC)

- 1. Reaction Mechanism
- 2. Hydrocarbon
- **3.** Aromatic Hydrocarbon
- 4. Environmental Chemistry & Analysis Of Organic Compounds

BIOLOGY

Module-1

- 1. Diversity in the Living World
- 2. Plant Kingdom
- 3. Animal Kingdom

Module-2

- 1. Morphology in Flowering Plants
- **2.** Anatomy of Flowering Plants
- **3.** Structural Organization in Animals

Module-3

- 1. Cell: The Unit of Life
- 2. Biomolecules
- 3. Cell Cycle & Cell Division
- 4. Transport in Plants
- 5. Mineral Nutrition

Module-4

- 1. Photosynthesis in Higher Plants
- 2. Respiration in Plants
- 3. Plant Growth and Development
- 4. Digestion & Absorption
- 5. Breathing & Exchange of Gases

Module-5

- Body Fluids & Its Circulation
 Excretory Products & Their Elimination
- **3.** Locomotion & Its Movement
- 4. Neural Control & Coordination
- **5.** Chemical Coordination and Integration

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do

12th Class Modules Chapter Details

PHYSICS

Module-1

- 1. Electrostatics
- 2. Capacitance

Module-2

- 1. Current Electricity
- 2. Magnetic Effect of Current and Magnetism

Module-3

- 1. Electromagnetic Induction
- 2. Alternating Current

Module-4

- 1. Geometrical Optics
- 2. Wave Optics

Module-5

- 1. Modern Physics
- 2. Nuclear Physics
- 3. Solids & Semiconductor Devices
- 4. Electromagnetic Waves

CHEMISTRY

Module-1(PC)

- 1. Solid State
- 2. Chemical Kinetics
- **3.** Solutions and Colligative Properties

Module-2(PC)

- 1. Electrochemistry
- 2. Surface Chemistry

Module-3(IC)

- 1. P-Block Elements
- 2. Transition Elements (d & f block)
- 3. Co-ordination Compound
- 4. Metallurgy

Module-4(OC)

- 1. HaloAlkanes & HaloArenes
- Alcohol, Phenol & Ether
 Aldehyde, Ketone &
- Carboxylic Acid

Module-5(OC)

- 1. Nitrogen & Its Derivatives
- 2. Biomolecules & Polymers
- 3. Chemistry in Everyday Life

BIOLOGY

Module-1

- 1. Reproduction in Organisms
- 2. Sexual Reproduction in
- Flowering Plants
- 3. Human Reproduction
- 4. Reproductive Health

Module-2

- **1.** Principles of Inheritance and Variation
- 2. Molecular Basis of Inheritance
- **3.** Evolution

Module-3

- 1. Human Health and Disease
- 2. Strategies for Enhancement in
- Food Production
- 3. Microbes in Human Welfare

Module-4

- **1.** Biotechnology: Principles and Processes
- 2. Biotechnology and Its
- Applications
- 3. Organisms and Populations

Module-5

- 1. Ecosystem
- 2. Biodiversity and Conservation
- 3. Environmental Issues

To purchase the books, go through the link belowhttp://www.etoosindia.com/smartmall/bookList.do